Problem F: tmk找三角
Description
有一棵树,树上有只tmk。他在这棵树上生活了很久,对他的构造了如指掌。所以他在树上从来都是走最短路,不会绕路。他还还特别喜欢三角形,所以当他在树上爬来爬去的时候总会在想,如果把刚才爬过的那几根树枝/树干锯下来,能不能从中选三根出来拼成一个三角形呢?
Input
第一行输入一个T,表示有多少组样例。
对于每组数据:第一行包含一个整数 N,表示树上节点的个数(从 1 到 N 标号)。
接下来的 N-1 行包含三个整数 a, b, len,表示有一根长度为 len 的树枝/树干在节点 a 和节点 b 之间。
接下来一行包含一个整数 M,表示询问数。
接下来M行每行两个整数 S, T,表示毛毛虫从 S 爬行到了 T,询问这段路程中的树枝/树干是否能拼成三角形。
Output
对于每组数据,每个询问输出一行,包含"Yes"或“No”,表示是否可以拼成三角形。
Sample Input
Sample Output
HINT
对于20%数据 1 ≤ N, M ≤ 1000
对于所有数据 1 ≤ N ≤ 100000, 1 ≤ M ≤ 100000, 1 ≤ len ≤ 1000000000
这题真是脑洞大开。
这个斐波那契神了。
思路:
建图,然后找最短路。
找到最短路lca
然后记录 接下来 判断三角形。
如果能构成三角形,那么必定有任意两边之和大于第三遍。 等价于 三条边,小的两边大于长的边。
那么len<1000000000. 其实就是斐波那契f(50) 就超了。
那么如果路径长度长于50 肯定有满足 f(n)+f(n+1)>f(n+2)的点,即一定能构成三角。
为什么呢? 因为如果构不成三角。那么必定满足任意f(n)+f(n+1)<=f(n+2);
假设f(1)=f(2)=1; 那就成了斐波那契数列。如果构不成三角形,最长边最小为f(n);
n>50 必定符合。
不足50 sort()遍历就行。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn= 1e5+100;
int cnt=1;
int head[maxn];
int dpt[maxn],len[maxn],fa[maxn];
int e[maxn];
struct node{
int val,to;
int nxt;
}edge[maxn*3];
void addedge(int x,int y,int val){
edge[cnt].to=y;
edge[cnt].val=val;
edge[cnt].nxt=head[x];
head[x]=cnt++;
}
void dfs(int id){
dpt[id]=dpt[fa[id]]+1; //Éî¶È
for(int i=head[id];i!=-1;i=edge[i].nxt){
if(edge[i].to!=fa[id]){
fa[edge[i].to]=id;
dfs(edge[i].to);
}
else len[id]=edge[i].val;
}
return ;
}
int judge(int x,int y){
int top=0;
if(dpt[x]<dpt[y]) swap(x,y);
while(dpt[x]>dpt[y]){
e[++top]=len[x];
if(top>=50) return 0;
x=fa[x];
}
while(x!=y){
e[++top]=len[x];
e[++top]=len[y];
if(top>=50) return 0;
x=fa[x];
y=fa[y];
}
sort(e+1,e+top+1);
for(int i=1;i<=top-2;++i){
if(e[i]+e[i+1]>e[i+2]) return 1;
}
return 0;
}
void init(){
memset(fa,0,sizeof(fa));
memset(dpt,0,sizeof(dpt));
memset(head,-1,sizeof(head));
len[1]=0;
}
int main(){
int T,n,m,x,y,val;
cin>>T;
while(T--){
init();
cin>>n;
for(int i=0;i<n-1;++i){
cin>>x>>y>>val;
addedge(x,y,val);
addedge(y,x,val);
}
dfs(1);
cin>>m;
while(m--){
cin>>x>>y;
if(judge(x,y)) printf("Yes\n");
else printf("No\n");
}
}
return 0;
}