tmk找三角

Problem F: tmk找三角

Description

有一棵树,树上有只tmk。他在这棵树上生活了很久,对他的构造了如指掌。所以他在树上从来都是走最短路,不会绕路。他还还特别喜欢三角形,所以当他在树上爬来爬去的时候总会在想,如果把刚才爬过的那几根树枝/树干锯下来,能不能从中选三根出来拼成一个三角形呢?

Input

第一行输入一个T,表示有多少组样例。

对于每组数据:第一行包含一个整数 N,表示树上节点的个数(从 到 标号)。

接下来的 N-1 行包含三个整数 a, b, len,表示有一根长度为 len 的树枝/树干在节点 和节点 之间。

接下来一行包含一个整数 M,表示询问数。

接下来M行每行两个整数 S, T,表示毛毛虫从 爬行到了 T,询问这段路程中的树枝/树干是否能拼成三角形。

Output

对于每组数据,每个询问输出一行,包含"Yes"“No”,表示是否可以拼成三角形。

Sample Input

251 2 51 3 202 4 304 5 1523 43 551 4 322 3 1003 5 454 5 6021 41 3

Sample Output

NoYesNoYes

HINT


对于20%数据 1 ≤ N, M ≤ 1000


对于所有数据 1 ≤ N ≤ 100000, 1 ≤ M ≤ 100000, 1 ≤ len ≤ 1000000000



这题真是脑洞大开。

这个斐波那契神了。


思路:

建图,然后找最短路。

找到最短路lca 

然后记录  接下来  判断三角形。

如果能构成三角形,那么必定有任意两边之和大于第三遍。 等价于 三条边,小的两边大于长的边。

那么len<1000000000.  其实就是斐波那契f(50) 就超了。

那么如果路径长度长于50 肯定有满足 f(n)+f(n+1)>f(n+2)的点,即一定能构成三角。

     为什么呢?   因为如果构不成三角。那么必定满足任意f(n)+f(n+1)<=f(n+2);

假设f(1)=f(2)=1; 那就成了斐波那契数列。如果构不成三角形,最长边最小为f(n);

n>50 必定符合。

     不足50 sort()遍历就行。


#include <bits/stdc++.h>
#define ll long long

using namespace std;
const int maxn= 1e5+100;
int cnt=1;
int head[maxn];
int dpt[maxn],len[maxn],fa[maxn];
int e[maxn];
struct node{
    int val,to;
    int nxt;
}edge[maxn*3];
void addedge(int x,int y,int val){
    edge[cnt].to=y;
    edge[cnt].val=val;
    edge[cnt].nxt=head[x];
    head[x]=cnt++;
}
void dfs(int id){
    dpt[id]=dpt[fa[id]]+1;  //Éî¶È
    for(int i=head[id];i!=-1;i=edge[i].nxt){
        if(edge[i].to!=fa[id]){
            fa[edge[i].to]=id;
            dfs(edge[i].to);
        }
        else len[id]=edge[i].val;
    }
    return ;
}
int judge(int x,int y){
    int top=0;
    if(dpt[x]<dpt[y]) swap(x,y);
    while(dpt[x]>dpt[y]){
        e[++top]=len[x];
        if(top>=50) return 0;
        x=fa[x];
    }
    while(x!=y){
        e[++top]=len[x];
        e[++top]=len[y];
        if(top>=50) return 0;
        x=fa[x];
        y=fa[y];
    }
    sort(e+1,e+top+1);
    for(int i=1;i<=top-2;++i){
        if(e[i]+e[i+1]>e[i+2]) return 1;
    }
    return 0;
}
void init(){
    memset(fa,0,sizeof(fa));
    memset(dpt,0,sizeof(dpt));
    memset(head,-1,sizeof(head));
    len[1]=0;
}
int main(){
    int T,n,m,x,y,val;
    cin>>T;
    while(T--){
        init();
        cin>>n;
        for(int i=0;i<n-1;++i){
            cin>>x>>y>>val;
            addedge(x,y,val);
            addedge(y,x,val);
        }
        dfs(1);
        cin>>m;
        while(m--){
            cin>>x>>y;
            if(judge(x,y)) printf("Yes\n");
            else printf("No\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值