集成学习(下) Blending集成学习算法原理和实战

导言

Blending被称为简化版的Stacking,是属于集大成类的算法之一。我们通过原理和简单实战了解Blending是在做什么?

原理

学习方式

(1) 将数据划分为大训练集和测试集,其中大训练集需要再次划分为小训练集和验证集(划分的比例取决于自己);
(2) 创建第一层的多个模型,这些模型可以使同质的也可以是异质的;(模型的选择可以说是监督学习的任何模型都可以接受)
(3) 使用大训练集训练步骤2中的多个模型,然后用训练好的模型预测验证集和测试集得到val_predict, test_predict1;
(4) 创建第二层的模型,使用val_predict作为训练集训练第二层的模型,val_label不变;
(5) 使用第二层训练好的模型对第二层测试集test_predict1进行预测,得到test_predict2,test_predict2为整个测试集的结果。

举个例子

在(1)步中,总的数据集被分成训练集和测试集,如80%训练集和20%测试集,然后在这80%的训练集中再拆分训练集70%和验证集30%,因此拆分后的数据集由三部分组成:训练集56% 、测试集20%、验证集24% 。训练集是为了训练模型,测试集是为了调整模型(调参),测试集则是为了检验模型的优度。
在(2)-(3)步中,我们使用训练集创建了K个模型,如SVM、random forests、XGBoost等,这个是第一层的模型。 训练好模型后将验证集输入模型进行预测,得到K组不同的输出,我们记作 A 1 , … , A K A_{1},…,A_{K} A1,,AK ,然后将测试集输入K个模型也得到K组输出,我们记作 B 1 , … , B K B_{1},…,B_{K} B1,,BK ,其中 A i A_{i} Ai的样本数与验证集样本数相等, B i B_{i} Bi 的样本数与测试集样本数相等。如果总的样本数有10000个样本,那么使用5600个样本训练了K个模型,输入验证集2400个样本得到K组2400个样本的结果 A 1 , … , A K A_{1},…,A_{K} A1,,AK ,输入测试集2000个得到K组2000个样本的结果 B 1 , … , B K B_{1},…,B_{K} B1,,BK
在(4)步中,我们使用K组2400个样本的验证集结果 A 1 , … , A K A_{1},…,A_{K} A1,,AK 作为第二层分类器的特征,验证集的2400个标签为因变量,训练第二层分类器,得到2400个样本的输出。
在(5)步中,将输入测试集2000个得到K组2000个样本的结果 B 1 , … , B K B_{1},…,B_{K} B1,,BK 放入第二层分类器,得到2000个测试集的预测结果。

优缺点

优点:简单粗暴
缺点:并没有完全充分使用到数据,对数据而言是非常奢侈浪费的

实战——人造数据

# 加载相关工具包
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
plt.style.use("ggplot")
%matplotlib inline
import seaborn as sns
# 创建数据
from sklearn import datasets 
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
data, target = make_blobs(n_samples=10000, centers=2, random_state=1, cluster_std=1.0 )
## 创建训练集和测试集
X_train1,X_test,y_train1,y_test = train_test_split(data, target, test_size=0.2, random_state=1)
## 创建训练集和验证集
X_train,X_val,y_train,y_val = train_test_split(X_train1, y_train1, test_size=0.3, random_state=1)
print("The shape of training X:",X_train.shape)
print("The shape of training y:",y_train.shape)
print("The shape of test X:",X_test.shape)
print("The shape of test y:",y_test.shape)
print("The shape of validation X:",X_val.shape)
print("The shape of validation y:",y_val.shape)
#  设置第一层分类器
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier

clfs = [SVC(probability = True),RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),KNeighborsClassifier()]

# 设置第二层分类器
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
# 输出第一层的验证集结果与测试集结果
val_features = np.zeros((X_val.shape[0],len(clfs)))  # 初始化验证集结果
test_features = np.zeros((X_test.shape[0],len(clfs)))  # 初始化测试集结果

for i,clf in enumerate(clfs):
    clf.fit(X_train,y_train)
    val_feature = clf.predict_proba(X_val)[:, 1]
    test_feature = clf.predict_proba(X_test)[:,1]
    val_features[:,i] = val_feature
    test_features[:,i] = test_feature
    
# 将第一层的验证集的结果输入第二层训练第二层分类器
lr.fit(val_features,y_val)
# 输出预测的结果
from sklearn.model_selection import cross_val_score
cross_val_score(lr,test_features,y_test,cv=5)

因为是人造数据,所以分类的特别好。使用人造数据是因为这种集成的方法在实际场景中非常少用,因此只是通过简单的数据对步骤进行大概的了解,下面我们会进行比赛数据实战的。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值