工业深度学习软件 从标注 训练 到测试 再到现场部署

工业深度学习软件 从标注 训练 到测试 再到现场部署
M7000技术规格表 Producer Specification 联系18046991280

影像系统
Imaging Sys 适配相机
supported cameras 支持海康,迈德威视,度申2D相机(可根据需求增加适配其他厂家相机)
Support for Hikvision, Mindvision, and Dushen 2D cameras (additional compatibility with cameras from other manufacturers can be added as needed)
目标检测
Detection 标注工具
Object detection annotation tool 支持矩形框标注,支持数据集管理
Supports rectangular box annotations,supports dataset manage
训练工具
training tool 支持GPU选择,模型生成与导出
Supports GPU selection, model generation and export
生产部署
Production deployment 导出生产现场所需模型
Export the required model for the production site
分类
Classification 标注工具
annotation tool 支持两类以上标注
Supports two or more types of annotations
训练工具
training tool 支持GPU选择,模型生成与导出
Supports GPU selection, model generation and export
生产部署
Production deployment 导出生产现场所需模型
Export the required model for the production site
字符识别OCR
Character Recognition 标注工具
annotation tool 支持单字符或字符串标注
Supports single character or string annotations
训练工具
training tool 支持GPU选择,模型生成与导出
Supports GPU selection, model generation and export
生产部署
Production deployment 导出生产现场所需模型
Export the required model for the production site
尺寸测量
Dimension measurement 模板和卡尺制作工具
Template and caliper making tools 支持模板制作和卡尺制作,生成配置文件
Support template and caliper production, generate configuration files
模型使用
models used in Win10 用户界面
User GUI 根据相机数量,拖拽式构建多相机检测任务
Drag-and-drop interface for building multi-camera inspection tasks based on the number of cameras
算法
Algorithm 根据需要配合相机,拖拽式构建传统或深度学习检测任务
Based on the camera requirements, the system allows for drag-and-drop configuration of traditional or deep learning-based inspection tasks.
输出结果
Output 屏幕显示缺陷位置或尺寸测量结果或OCR字符识别结果
Display of defect positions or measurement results of dimensions or OCR character recognition results.
电控系统(可选)
Electrical control(Optional) 控制单元
Control unit 采用专用高速运动控制器,电控板输入输出接口标准化
Utilizing a specialized high-speed motion controller, the electrical control board features standardized input and output interfaces.
DLL使用
DLL usage DLL 支持将算法DLL集成到客户应用程序中,支持C# VB QT5 VC++ Delphi
Support the integration of algorithm DLLs into customer applications, support C # VB QT5 VC++Delphi
在这里插入图片描述

我们很容易掌握AI深度学习。让机器能够模仿人脑的思考方式,从而摆脱原来的固有数据库比较的限制。深度学习的发展课件:链接:https://pan.baidu.com/s/1Ck4GN9N0OCzQgH0MxZOqeQ 提取码:b74k随着机器学习, 深度学习的发展,很多人眼很难去直接量化的特征, 深度学习可以搞定, 这就是深度学习带给我们的优点和前所未有的吸引力。很多特征我们通过传统算法无法量化,或者说很难去做到的, 深度学习可以搞定。特别是在图像分类, 目标检测这些问题上取得了显著的提升。下图是近几年来深度学习在图像分类问题上取得的成绩。●   机器视觉缺陷检测的痛点●   仍存在下面主要的问题和难点 1) 受环境、光照、生产工艺和噪声等多重因素影响,检测系统的信噪比一般较低,微弱信号难以检出或不能与噪声有效区分。如何构建稳定、可靠、鲁棒的检测系统,以适应光照变化、噪声以及其他外界不良环境的干扰,是要解决的问题之一。 2) 由于检测对象多样、表面缺陷种类繁多、形态多样、复杂背景,对于众多缺陷类型产生的机理以及其外在表现形式之间的关系尚不明确,致使对缺陷的描述不充分,缺陷的特征提取有效性不高,缺陷目标分割困难;同时,很难找到“标准”图像作为参照,这给缺陷的检测和分类带来困难,造成识别率尚有待提高。 3) 机器视觉表面缺陷检测,特别是在线检测,其特点是数据量庞大、冗余信息多、特征空间维度高,同时考虑到真正的机器视觉面对的对象和问题的多样性,从海量数据中提取有限缺陷信息的算法能力不足,实时性不高。 4) 与机器视觉表面检测密切相关的人工智能理论虽然得到了很大的发展,但如何模拟人类大脑的信息处理功能去构建智能机器视觉系统还需要理论上的进一步研究,如何更好的基于生物视觉认识、指导机器视觉得检测也是研究人员的难点之一。 5) 从机器视觉表面检测的准确性方面来看,尽管一系列优秀的算法不断出现,但在实际应用中准确率仍然与满足实际应用的需求尚有一定差距,如何解决准确识别与模糊特征之间、实时性与准确性之间的矛盾仍然是目前的难点。 传统算法在某些特定的应用中已经取得了较好的效果,但仍然存在许多不足。例如:图像预处理步骤繁多且具有强烈的针对性,鲁棒性差;多种算法计算量惊人且无法精确的检测缺陷的大小和形状。而深度学习可以直接通过学习数据更新参数,避免了人工设计复杂的算法流程,并且有着极高的鲁棒性和精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听海拉拉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值