NMS(非极大值抑制)

近段时间一直在看multi-person pose estimation,在最后有一个剔除候选keypoint的过程,该过程采用的NMS方法。但我一直对NMS不理解,经过查找资料,整理出本人对NMS的理解内容,如有不对请指出。

在引进NMS概念之前我们先介绍IOU(交并比),因为在NMS中选出框图起到至关重要的作用

1、IOU(交并比)

                          

物体检测需要定位出物体的bounding box,就像上面的图片一样,我们不仅要定位出车辆的bounding box 我们还要识别出bounding box 里面的物体就是车辆。

对于bounding box的定位精度,有一个很重要的概念,那就是定位精度评价公式:IOU。

IOU表示了bounding box 与 ground truth 的重叠度,如下图所示:

这里写图片描述

矩形框A、B的一个重合度IOU计算公式为:

                                                                 IOU=Area(A∩B)/Area(A∪B)

就是矩形框A、B的重叠面积占A、B并集的面积比例:

                                                                 IOU=SI/(SA+SB-SI)

如何计算IOU(交并比)

                                

首先求出重合面积:

     选取两个矩形框左顶角的横,纵坐标的最大值,x21,y21;选取两个矩形框右下边角的横纵坐标的最小值,x12,y12;

重合面积计算:

                             inter=    \left | x12-x21 \right |*\left | y12-y21 \right |

并集的面积计算:

                        b =\left | x_{11}- x_{12}\right |*\left | y_{11}- y_{12} \right |+\left | x_{21}- x_{22}\right |*\left | y_{21}- y_{22} \right |-inter

                              

计算IOU:

                                   IOU=\frac{inter}{b}


具体实例如下:

有了IOU(交并比)的概念理解,接下来我们就进入正题,介绍NMS

2、NMS概念

NMS也即非极大值抑制。在最近几年常见的物体检测算法(包括rcnn、sppnet、fast-rcnn、faster-rcnn等)中,最终都会从一张图片中找出很多个可能是物体的矩形框,然后为每个矩形框为做类别分类概率:

所谓非极大值抑制:依靠分类器得到多个候选框,以及关于候选框中属于类别的概率值,根据分类器得到的类别分类概率做排序,具体算法流程如下:

(1)将所有框的得分排序,选中最高分及其对应的框 
(2)遍历其余的框,如果和当前最高分框的重叠面积(IOU)大于一定阈值,我们就将框删除。(为什么要删除,是因为超过设定阈值,认为两个框的里面的物体属于同一个类别,比如都属于狗这个类别。我们只需要留下一个类别的可能性框图即可。)
(3)从未处理的框中继续选一个得分最高的,重复上述过程。

举例说明:(1)(2),这里设定交并比>=0.6就删除对比框图,留下最高分的框图;对于低于阈值的框图留下,然后在剩下的框图中排序,选出置信度值高的框图,然后重复交并比比较这个过程。

(1)选出Dog这个框图

(1)选出Bike这个框图

nms非极大值抑制有以下几种方法和改进: 1. 基本的NMS方法是利用得分高的边框来抑制得分低且重叠程度高的边框。这种方法简单有效,但在更高的目标检测需求下存在一些缺点。 2. Soft NMS是一种改进的方法,它通过对重叠框的得分进行一定的衰减,而不是直接抑制掉得分低的边框。这样可以保留一些得分低但可能是真正目标的边框。 3. Softer NMS是Soft NMS的进一步改进,它在计算重叠框的得分衰减时引入了一个可学习的参数。这个参数可以根据具体的数据进行优化,从而更加灵活地调整得分衰减的方式。 4. Adaptive NMS是根据物体密集程度自适应调整NMS阈值的方法。它通过使用卷积神经网络(CNN)来判断人群的密集程度,并根据密集程度决定NMS阈值的大小。 5. IoUNet是一种基于IoU(Intersection over Union)的方法,它通过训练一个神经网络来预测边框之间的IoU值。然后,根据IoU值来判断是否进行非极大值抑制。 综上所述,nms非极大值抑制有基本的NMS方法、Soft NMS、Softer NMS、Adaptive NMS和IoUNet等不同的方法和改进。每种方法都有其特点和适用场景,可以根据具体需求选择合适的方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【目标检测系列】非极大值抑制(NMS)的各类变体汇总](https://blog.csdn.net/weixin_47196664/article/details/106754955)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值