文献阅读
zouxiaolv
踏实、稳重、前行
展开
-
DRConv-pytorch改称输出和输入一样的尺寸
代码】DRConv-pytorch改称输出和输入一样的尺寸。原创 2022-07-23 17:34:09 · 639 阅读 · 0 评论 -
Involution: Inverting the Inherence of Convolution for Visual Recognition(CVPR2021)
首先是对输入进行reshape(采用的是nn.unfold方法---该方法在卷积实现实现中的作用就是在卷积核操作前,先将输入按照卷积核的尺寸大小拉直排列)上图中的红色框图中的第二个图片形式。1.首先卷积核的获得是通过对输入图谱简单的MLP线性转换得到G个大小尺寸K*K(G就是几组不同的卷积核,那么就有C/G个通道是共享同一个卷积核)2.对于重新编写卷积算子的方法采用的是caffe里面的卷积实现思想。①空间上的每一像素点是不一样的卷积核。②每一个通道是不一样的卷积核。②几个通道是共享同一个卷积核。......原创 2022-07-20 21:33:05 · 1106 阅读 · 0 评论 -
mixconv代码
讲解就是 :先将输入进行分组,分完租后,每一个组采用不同的卷积核大小,用深度可分离卷积完成卷积过程缺点:类似inception,分组越多,速度降低越快。只关注参数量降低原创 2022-06-28 18:38:48 · 532 阅读 · 0 评论 -
nn.Parameter】Pytorch特征融合自适应权重设置(可学习权重使用)
【nn.Parameter】Pytorch特征融合自适应权重设置(可学习权重使用)_陈嘿萌的博客-CSDN博客_pytorch 特征融合转载 2022-06-23 08:34:05 · 1411 阅读 · 0 评论 -
【扫盲】机器学习图像处理中的深层/浅层、局部/全局特征
浅层特征:浅层网络提取的特征和输入比较近,蕴含更多的像素点的信息,主要为一些细粒度的信息,比如颜色、纹理、边缘、棱角信息。原理:浅层网络感受野较小,感受野重叠区域也较小,所以保证网络捕获更多细节深层特征:深层网络提取的特征离输出较近,蕴含更抽象的信息,即语义信息,主要为一些粗粒度的信息。原理:感受野增加,感受野之间重叠区域增加,图像信息进行压缩,获取的是图像整体性的一些信息。基于内容的图像检索(Content-based Image Retrieval, CBIR)方法利用从图像提取的特征来进行检索。常用的转载 2022-06-17 21:12:51 · 5202 阅读 · 0 评论 -
人体姿态估计的热图变成坐标点的两种方案
no转载 2022-06-17 16:08:43 · 652 阅读 · 2 评论 -
倒置残差的理解
no原创 2022-06-17 11:04:16 · 2361 阅读 · 0 评论 -
【无标题】
no原创 2022-06-17 10:36:36 · 97 阅读 · 0 评论 -
注意力机制中的Q、K和V的意义
无原创 2022-06-16 09:58:50 · 3868 阅读 · 0 评论 -
Residual Local Feature Network for Efficient Super-Resolution关于特征可视化内容详解
nnn原创 2022-06-16 09:01:44 · 202 阅读 · 0 评论 -
Lightweight Image Super-Resolution with Information Multi-distillation Network
论文的contrast-aware channel attention module对于IMDB的代码有一些讲解,channel split不是对半平分channel,而是采用:总的channel*ratia,剩余的channel=总的channel - 总的channel*ratia,原创 2022-06-08 20:55:45 · 684 阅读 · 0 评论 -
Dite-HRNet采用了动态卷积核操作
无原创 2022-06-06 19:44:37 · 499 阅读 · 0 评论 -
Dynamic Convolution: Attention over Convolution Kernels (CVPR-2020)
ddd原创 2022-06-06 09:45:06 · 281 阅读 · 0 评论 -
gated multi-level fusion
Gated Fully Fusion for Semantic Segmentation:DecoupleSegNets/gffnets.py at master · lxtGH/DecoupleSegNets · GitHub原创 2022-05-30 21:31:50 · 98 阅读 · 0 评论 -
CARAFE: Content-Aware ReAssembly of FEatures
import torchfrom torch import nnfrom torch.nn import functional as Ffrom collections import OrderedDict# 这一部分 完成的是上采样核预测模块, 即论文图中的kernel prediction moduleclass KernelPredictionModule(nn.Module): def __init__(self, input_channel, channel_cm=64,.转载 2022-04-24 16:43:06 · 456 阅读 · 0 评论 -
Heatmap Regression via Randomized Rounding
关于里面的公式推导:推导过程:是的误差,且满足均匀分布①当时:②当时:关于坐标y方向上的坐标误差也是同样的计算方式原创 2021-12-04 08:48:49 · 286 阅读 · 1 评论 -
Strip Pooling: Rethinking Spatial Pooling for Scene Parsing部分解释
这个部分是:Strip pooling Module(SPM)SPM可以看做是一个Bottleneck部分,类似于residuleclass SPBlock(nn.Module): def __init__(self, inplanes, outplanes, norm_layer=None): super(SPBlock, self).__init__() midplanes = outplanes self.conv1 = nn.Con.原创 2020-06-18 18:43:22 · 690 阅读 · 2 评论