C试题
第5题:请编写一个函数void fun(int m,int k,int xx[]),该函数的功能是:将大于整数m且紧靠m的k个素数存入xx所指的数组中。
ChatGPT回答如下:
主要考察了以下几个知识点:
-
素数的判断
:这里使用了一个辅助函数is_prime来判断一个数是否为素数。判断素数的方法是,从2开始,依次用每个小于等于该数平方根的自然数去除该数,如果都无法整除,则该数为素数。 -
数组的使用
:这里需要将大于整数m且紧靠m的k个素数存入xx所指的数组中。我们使用数组来存储这些素数,并使用指针来传递数组的地址,以便在函数外部使用这些素数。同时,在函数内部需要使用循环来遍历数组,并将素数存入数组中。补充知识点:
素数是指
只能被1和它本身整除的自然数,也称为质数
。素数是数论中的重要研究对象,具有很多重要的性质,如素数定理、费马小定理等。素数在密码学、编码等领域有着广泛的应用。常见的素数有2、3、5、7、11等,其中2是最小的素数。判断一个数是否为素数的方法是,从2开始,依次用每个小于等于该数平方根的自然数去除该数,如果都无法整除,则该数为素数。这个方法的时间复杂度为O(sqrt(n)),其中n为待判断的数。
该程序的解题思路:
这道题目要求我们编写一个C语言函数,函数名为fun
,接收三个参数,分别为一个整数m
、一个整数k
和一个整型数组xx
。函数的功能是将大于整数m
且紧靠m
的k
个素数存入xx
所指的数组中。
解题思路如下:
-
首先需要编写一个判断素数的函数,用来验证一个数是否为素数。可以使用传统的方法,从2开始依次除以每个小于该数的自然数,如果都无法整除,则该数为素数。
-
在
fun
函数中,首先需要使用一个循环语句,从m+1
开始依次判断每个数是否为素数,如果是素数,则将其存入数组xx
中,并将计数器count
加1。当count
达到k
时,退出循环。 -
最后,将存储素数的数组
xx
返回即可。
解法:C语言代码实现:
#include <stdio.h>
#include <stdbool.h>
bool isPrime(int n) {
if (n <= 1) return false;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
void fun(int m, int k, int xx[]) {
int count = 0;
for (int i = m + 1; ; i++) {
if (isPrime(i)) {
xx[count++] = i;
if (count == k) break;
}
}
}
int main() {
int m = 10, k = 5;
int xx[k];
fun(m, k, xx);
for (int i = 0; i < k; i++) {
printf("%d ", xx[i]);
}
return 0;
}
在这个代码中,我们定义了一个isPrime
函数用来判断一个数是否为素数,然后在fun
函数中使用循环语句从m+1
开始依次判断每个数是否为素数,如果是素数,就将其存入数组xx
中,并将计数器count
加1。当count
达到k
时,就退出循环。最后,我们在main
函数中调用fun
函数,并打印出存储素数的数组xx中的元这道题需要我们实现一个函数 fun(int m, int k, int xx[]),将大于整数m且紧靠m的k个素数存入xx所指的数组中。
isPrime函数这段代码是一个判断一个数是否为素数的函数。函数名为isPrime
,接收一个整数n
作为参数,返回一个布尔值。
首先,如果n
小于等于1,则直接返回false
,因为1及以下的数都不是素数。
接下来,使用一个循环从2开始依次除以每个小于等于sqrt(n)
的自然数,如果能被整除,则直接返回false
,因为只要存在一个因子,该数就不是素数。注意循环条件是i * i <= n
,这是因为如果存在大于sqrt(n)
的因子,则一定存在小于sqrt(n)
的因子,因此只需要判断到sqrt(n)
即可。
最后,如果循环结束后仍未返回false
,则说明该数为素数,返回true
即可。