以下是AI大模型API文档的核心内容概述,以通用框架和典型实现为例:
一、API基础架构
1. 基础信息
- API类型:RESTful API或gRPC(如阿里云通义千问支持HTTPS接口)
- 请求方式:通常为
POST
方法 - 基础URL:例如:
https://api.example.com/v1/models/{model_name}/invoke
二、认证方式
1. API密钥认证
-
Header参数:
Authorization: Bearer YOUR_API_KEY
-
或通过Query参数:
?api_key=YOUR_API_KEY
2. IAM角色(云服务常用)
- 使用临时Token(如阿里云RAM子账号STS Token)
三、请求参数
1. 必选参数
-
模型标识:
"model": "qwen-max" // 指定模型版本(如qwen, qwen-plus, qwen-max)
-
输入内容:
"prompt": "请生成一个关于人工智能的科普文章大纲"
2. 可选参数
-
输出控制:
"max_tokens": 512, // 最大输出长度 "temperature": 0.7, // 创造性:0(确定性)~1(随机性) "top_p": 0.8 // 采样控制
-
格式约束:
"response_format": "json" // 输出格式(text/json/markdown)
-
停止条件:
"stop": ["\n\n", "###"] // 遇到指定符号停止生成
四、请求示例(Java代码)
// 使用阿里云Java SDK示例
import com.aliyun.openservices.model.InvokeRequest;
import com.aliyun.openservices.client.AcsClient;
public class QwenAPIClient {
public static void main(String[] args) {
AcsClient client = new AcsClient("your-access-key", "your-secret-key");
InvokeRequest request = new InvokeRequest()
.withModel("qwen-max")
.withPrompt("解释量子计算的原理")
.withMaxTokens(200)
.withTemperature(0.5);
String response = client.invoke(request);
System.out.println(response);
}
}
五、响应格式
1. 成功响应
{
"id": "req_001",
"model": "qwen-max",
"result": "量子计算利用量子叠加和纠缠原理,通过量子比特进行并行计算,可大幅提升复杂问题的求解效率...",
"status": "success",
"usage": {
"prompt_tokens": 32,
"completion_tokens": 180,
"total_tokens": 212
}
}
2. 错误响应
{
"error": {
"code": "403",
"message": "Invalid API key",
"type": "authentication_error"
}
}
六、关键功能扩展
1. 流式响应(Streaming)
- Header:
Accept: text/event-stream
- 应用场景:实时生成文本(如聊天机器人)
- 示例响应:
data: {"event":"start","text":""} data: {"event":"message","text":"量子计算通过"} data: {"event":"message","text":"量子叠加原理"} data: {"event":"done","text":""}
2. 批量处理
- 支持单次请求多个prompt:
"prompts": ["问题1", "问题2", "问题3"]
七、最佳实践
-
性能优化
- 预加载模型(减少冷启动延迟)
- 使用
max_tokens
控制输出长度 - 合理设置
temperature
平衡准确性和多样性
-
安全性
- 通过IAM角色管理权限
- 避免在客户端暴露API密钥
-
错误处理
- 处理
rate_limit
错误(如等待后重试) - 捕获
invalid_request_error
并修正参数
- 处理
八、文档获取渠道
- 官方文档:
- 阿里云:通义千问API文档
- OpenAI:OpenAI API Docs
- SDK支持:主流语言(Java/Python/Go)均提供封装库
如需特定模型(如Qwen、GPT-4)的详细参数或场景示例,可进一步说明需求。