在构建基于大模型的 AI 应用时,RAG(Retrieval-Augmented Generation)、向量数据库、智能体(Agent) 是几个关键的技术概念和组件。它们各自承担不同的角色,并可以协同工作来实现复杂任务。
本文将从概念出发,结合 Ollama(本地大模型运行工具) 和 LangChain4j(Java 语言的 LangChain 实现) 技术栈,详细说明它们的工作原理、区别及如何协同使用,并以表格形式总结对比。
🧠 一、核心概念详解
1. 大模型(LLM)
- 定义:具备大规模参数的语言模型,能够理解自然语言并生成高质量文本。
- 作用:作为整个系统的“大脑”,负责理解和生成内容。
- 示例:
ollama run llama3
ollama run qwen
2. RAG(Retrieval-Augmented Generation)
- 定义:一种结合信息检索与生成的方法,在回答问题前先从外部知识库中检索相关信息,再由 LLM 生成答案。
- 优势:
- 提高回答准确率
- 可用于私有数据问答
- LangChain4j 中的使用方式:
EmbeddingModel embeddingModel = new OllamaEmbeddingModel("nomic-embed-text"); VectorStore vectorStore = new LocalVectorStore(embeddingModel, "data/"); PromptTemplate promptTemplate = PromptTemplate.from("根据以下上下文回答问题:{{context}}\n问题:{{question}}"); RerankStrategy rerankStrategy = new DefaultRerankStrategy(); RetrievalAugmentedGenerator generator = RetrievalAugmentedGenerator.builder() .embeddingModel(embeddingModel) .vectorStore(vectorStore) .promptTemplate(promptTemplate) .rerankStrategy(rerankStrategy) .build(); String answer = generator.generate("什么是 LangChain4j?");
3. 向量数据库(Vector Database)
- 定义:用于存储和查询向量表示的数据结构,常用于语义搜索。
- 作用:
- 存储文档或文本片段的嵌入向量
- 支持快速相似性检索
- LangChain4j 支持的实现:
LocalVectorStore
(本地文件)- 集成第三方如
Chroma
,FAISS
等
- Ollama 嵌入支持:
- 使用
nomic-embed-text
模型进行文本向量化
ollama run nomic-embed-text
- 使用
4. 智能体(Agent)
- 定义:一个具备目标导向行为的实体,可以根据环境变化做出决策,执行一系列动作完成任务。
- LangChain4j 中的 Agent 类型:
FunctionCallingAgent
:调用预定义函数完成任务ToolBasedAgent
:通过工具链自动选择并调用工具
- 示例代码:
Function<String, String> searchTool = query -> { // 调用搜索引擎或本地数据库 return searchEngine.search(query); }; Tool tool = Tool.builder() .name("search") .description("用于搜索网络信息") .function(searchTool) .build(); Agent agent = Agent.builder() .tools(Collections.singletonList(tool)) .build(); String result = agent.execute("查找 LangChain4j 的最新版本");
🔗 二、Ollama 与 LangChain4j 协同工作流程
1. 架构图(文字描述)
[用户输入]
↓
[LangChain4j Agent]
↓
[调用 Ollama API 或本地模型]
↓
[可选:使用 RAG 查询向量数据库获取上下文]
↓
[生成最终响应]
2. 典型协作流程
步骤 | 描述 |
---|---|
1 | 用户提问(例如:“帮我查 LangChain4j 最新功能”) |
2 | LangChain4j Agent 判断是否需要调用工具(如搜索) |
3 | 若需补充信息,则调用向量数据库(RAG)获取相关文档 |
4 | 使用 Ollama 提供的模型(如 qwen , llama3 )生成回答 |
5 | 返回整合后的结果给用户 |
📊 三、技术对比总结表
组件 | 功能描述 | 是否必须 | 在 Ollama 中体现 | 在 LangChain4j 中体现 |
---|---|---|---|---|
大模型(LLM) | 生成语言、理解意图 | ✅ | ollama run <model> | LlmClient , [ChatLanguageModel](file://dev\langchain4j\model\chat\ChatLanguageModel.java#L9-L19) |
RAG | 结合检索与生成提高准确性 | 可选 | 需配合向量模型(如 nomic-embed-text ) | RetrievalAugmentedGenerator |
向量数据库 | 存储和检索向量数据 | 可选 | 无直接支持 | VectorStore , LocalVectorStore , Chroma |
智能体(Agent) | 自动化决策与任务调度 | 可选 | 无直接支持 | Agent , FunctionCallingAgent |
工具(Tools) | 扩展能力,如搜索、数据库查询等 | 可选 | 无直接支持 | Tool , ToolExecutor |
✅ 四、典型应用场景推荐组合
场景 | 推荐技术组合 |
---|---|
私有知识库问答系统 | LLM + RAG + 向量数据库 |
自动客服/聊天机器人 | LLM + Agent + Tools |
智能数据分析助手 | LLM + Agent + Tools + 向量数据库 |
多模态问答(图文混合) | LLM(多模态)+ 向量数据库 + Agent |
📌 总结
- Ollama 提供了便捷的大模型部署方式,适合本地运行推理任务;
- LangChain4j 提供了 Java 生态下的模块化 AI 开发框架,支持 RAG、Agent、工具扩展等功能;
- 两者结合可以构建出完整的 AI 应用系统,适用于企业级落地场景。
如需提供具体项目集成样例(如 Spring Boot 整合),欢迎继续提问!