在构建基于大模型的 AI 应用时,RAG、向量数据库、智能体(Agent) 是几个关键的技术概念和组件,结合 Ollama 和 LangChain4j技术栈,详细说明它们的工作原理、区别及如何协同使用

在构建基于大模型的 AI 应用时,RAG(Retrieval-Augmented Generation)向量数据库智能体(Agent) 是几个关键的技术概念和组件。它们各自承担不同的角色,并可以协同工作来实现复杂任务。

本文将从概念出发,结合 Ollama(本地大模型运行工具)LangChain4j(Java 语言的 LangChain 实现) 技术栈,详细说明它们的工作原理、区别及如何协同使用,并以表格形式总结对比。
在这里插入图片描述


🧠 一、核心概念详解

1. 大模型(LLM)

  • 定义:具备大规模参数的语言模型,能够理解自然语言并生成高质量文本。
  • 作用:作为整个系统的“大脑”,负责理解和生成内容。
  • 示例
    • ollama run llama3
    • ollama run qwen

2. RAG(Retrieval-Augmented Generation)

  • 定义:一种结合信息检索与生成的方法,在回答问题前先从外部知识库中检索相关信息,再由 LLM 生成答案。
  • 优势
    • 提高回答准确率
    • 可用于私有数据问答
  • LangChain4j 中的使用方式
    EmbeddingModel embeddingModel = new OllamaEmbeddingModel("nomic-embed-text");
    VectorStore vectorStore = new LocalVectorStore(embeddingModel, "data/");
    
    PromptTemplate promptTemplate = PromptTemplate.from("根据以下上下文回答问题:{{context}}\n问题:{{question}}");
    RerankStrategy rerankStrategy = new DefaultRerankStrategy();
    
    RetrievalAugmentedGenerator generator = RetrievalAugmentedGenerator.builder()
        .embeddingModel(embeddingModel)
        .vectorStore(vectorStore)
        .promptTemplate(promptTemplate)
        .rerankStrategy(rerankStrategy)
        .build();
    
    String answer = generator.generate("什么是 LangChain4j?");
    

3. 向量数据库(Vector Database)

  • 定义:用于存储和查询向量表示的数据结构,常用于语义搜索。
  • 作用
    • 存储文档或文本片段的嵌入向量
    • 支持快速相似性检索
  • LangChain4j 支持的实现
    • LocalVectorStore(本地文件)
    • 集成第三方如 Chroma, FAISS
  • Ollama 嵌入支持
    • 使用 nomic-embed-text 模型进行文本向量化
    ollama run nomic-embed-text
    

4. 智能体(Agent)

  • 定义:一个具备目标导向行为的实体,可以根据环境变化做出决策,执行一系列动作完成任务。
  • LangChain4j 中的 Agent 类型
    • FunctionCallingAgent:调用预定义函数完成任务
    • ToolBasedAgent:通过工具链自动选择并调用工具
  • 示例代码
    Function<String, String> searchTool = query -> {
        // 调用搜索引擎或本地数据库
        return searchEngine.search(query);
    };
    
    Tool tool = Tool.builder()
        .name("search")
        .description("用于搜索网络信息")
        .function(searchTool)
        .build();
    
    Agent agent = Agent.builder()
        .tools(Collections.singletonList(tool))
        .build();
    
    String result = agent.execute("查找 LangChain4j 的最新版本");
    

🔗 二、Ollama 与 LangChain4j 协同工作流程

1. 架构图(文字描述)

[用户输入] 
    ↓
[LangChain4j Agent]
    ↓
[调用 Ollama API 或本地模型]
    ↓
[可选:使用 RAG 查询向量数据库获取上下文]
    ↓
[生成最终响应]

2. 典型协作流程

步骤描述
1用户提问(例如:“帮我查 LangChain4j 最新功能”)
2LangChain4j Agent 判断是否需要调用工具(如搜索)
3若需补充信息,则调用向量数据库(RAG)获取相关文档
4使用 Ollama 提供的模型(如 qwen, llama3)生成回答
5返回整合后的结果给用户

📊 三、技术对比总结表

组件功能描述是否必须在 Ollama 中体现在 LangChain4j 中体现
大模型(LLM)生成语言、理解意图ollama run <model>LlmClient, [ChatLanguageModel](file://dev\langchain4j\model\chat\ChatLanguageModel.java#L9-L19)
RAG结合检索与生成提高准确性可选需配合向量模型(如 nomic-embed-textRetrievalAugmentedGenerator
向量数据库存储和检索向量数据可选无直接支持VectorStore, LocalVectorStore, Chroma
智能体(Agent)自动化决策与任务调度可选无直接支持Agent, FunctionCallingAgent
工具(Tools)扩展能力,如搜索、数据库查询等可选无直接支持Tool, ToolExecutor

✅ 四、典型应用场景推荐组合

场景推荐技术组合
私有知识库问答系统LLM + RAG + 向量数据库
自动客服/聊天机器人LLM + Agent + Tools
智能数据分析助手LLM + Agent + Tools + 向量数据库
多模态问答(图文混合)LLM(多模态)+ 向量数据库 + Agent

📌 总结

  • Ollama 提供了便捷的大模型部署方式,适合本地运行推理任务;
  • LangChain4j 提供了 Java 生态下的模块化 AI 开发框架,支持 RAG、Agent、工具扩展等功能;
  • 两者结合可以构建出完整的 AI 应用系统,适用于企业级落地场景。

如需提供具体项目集成样例(如 Spring Boot 整合),欢迎继续提问!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱的叹息

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值