
Langchain
文章平均质量分 84
爱的叹息
to be or not to be ,this is a question
展开
-
Python+LangChain+ollama+qwen:0.5b打造智能问答神器
本文介绍了一个基于Python+LangChain+Ollama(Qwen:0.5b模型)的通用问答系统开发方案。系统通过修改原有命名程序的三个核心模块:模型初始化模块、新增的问答处理模块和主函数交互模块,实现了支持中文的自然语言问答功能。文章提供了完整的代码实现(qa_system.py),包括模型加载、问答处理和命令行交互界面,并展示了实际问答示例。最后,作者提出了进阶优化建议,如多模型支持、日志记录、提示工程优化和Web接口开发,以及RAG集成、语音交互等未来扩展方向。该系统可作为本地化智能问答的基础原创 2025-05-30 16:29:18 · 444 阅读 · 0 评论 -
使用Python、LangChain和Ollama本地实现取名程序
本文介绍了使用Python、LangChain和Ollama本地构建命名程序的完整方案。通过安装Ollama本地大模型服务,结合LangChain框架创建适配器,实现根据关键词自动生成名称的功能。该程序支持5个名称的批量生成,并可选扩展为FastAPI Web服务。文章详细展示了从环境配置到核心代码实现的全过程,包括服务检查、提示词设计、名称解析等关键技术点。该方案具有本地运行、可定制性强等特点,适用于企业命名、产品命名等场景,开发者可根据需求进一步优化模型参数和功能扩展。原创 2025-05-30 14:12:39 · 317 阅读 · 0 评论 -
LangChain大模型应用开发全攻略
LangChain 完整学习路线图摘要 LangChain 是构建语言模型应用的强大框架,提供从基础到高级的全套开发工具。学习路径分为四个阶段: 1️⃣ 基础准备:了解LLM原理、Python编程和环境配置 2️⃣ 核心模块:掌握六大核心组件(模型、提示模板、链、记忆、代理、索引)及其组合应用 3️⃣ 实战开发:构建智能客服、知识库问答、数据分析助手等典型应用 4️⃣ 高阶进阶:探索多模态支持、性能优化和自定义组件开发 关键优势:通过模块化组件实现LLM应用的快速开发,支持从简单文本生成到复杂决策系统的构建原创 2025-05-30 09:14:35 · 405 阅读 · 0 评论 -
LangChain三大消息模式解析:AIMessage、HumanMessage 和 SystemMessage
LangChain 的 schema 定义了三种角色类型的数据模式:AIMessage、HumanMessage 和 SystemMessage,用于构建结构化的对话系统。AIMessage 代表 AI 生成的回复,HumanMessage 代表用户的输入,SystemMessage 则提供对话的上下文或规则。通过这三种消息类型,对话系统能够更智能地处理用户查询并生成合适的回复。例如,用户询问天气时,HumanMessage 表示用户问题,AIMessage 表示 AI 的回复,而 SystemMessag原创 2025-05-20 17:37:11 · 1146 阅读 · 0 评论 -
手把手教你用LangChain+Ollama打造本地取名神器
本文详细介绍了如何在一台新安装 Windows 10 的电脑上,使用 LangChain 和本地部署的开源大语言模型(如 tiny-llama 或 phi2)开发一个取名应用。步骤包括安装 Python、Git(可选)、Ollama,拉取轻量级模型,安装 LangChain 及相关依赖,编写 Python 脚本实现取名功能,并最终运行程序。整个过程无需联网或 API 密钥,完全本地运行,适合初学者入门本地 AI 应用开发。文章还提供了扩展建议,如添加 GUI 界面、导出功能等,以增强应用的功能性。原创 2025-05-20 17:23:12 · 923 阅读 · 0 评论 -
LangChain API密钥管理全攻略
LangChain 提供了多种灵活的 API 密钥管理策略,适用于不同规模和需求的项目。常见的策略包括通过环境变量、.env 文件、硬编码传参、自定义封装类以及集成企业级密钥管理工具(如 AWS Secrets Manager、HashiCorp Vault 等)。环境变量和 .env 文件适合开发和团队协作,而硬编码传参仅适用于快速测试。对于中大型项目,建议使用自定义封装类或集成企业级密钥管理工具,以提高安全性和可维护性。LangChain 不强制规定密钥管理方式,开发者可根据项目需求选择合适策略,确保系原创 2025-05-20 16:59:20 · 545 阅读 · 0 评论 -
向量存储系统:高维数据检索的未来
向量存储系统(Vector Store)是一种专门用于高效存储、索引和检索高维向量数据的系统,广泛应用于推荐系统、图像搜索、语义相似度匹配、RAG(Retrieval-Augmented Generation)等场景。其核心功能是将非结构化或半结构化数据(如文本、图片、音频)转换为嵌入向量后进行存储与快速检索。向量存储系统解决了海量数据检索慢、语义理解不足、动态更新困难、内存占用大等问题,包含编码器、向量索引构建、向量插入/更新、向量检索、持久化与恢复、分布式支持等功能模块。典型应用场景包括推荐系统、图像检原创 2025-05-20 16:33:20 · 377 阅读 · 0 评论 -
LangChain与LEDVR:构建智能问答系统
LangChain 是一个用于构建语言模型应用的框架,支持多种工作流模式,如 LEDVR(加载、提取、分割、向量化、检索)。结合 RAG(检索增强生成)技术,可以实现基于知识库的问答系统。本文通过一个完整的示例,展示了如何使用 LangChain 实现基于 LEDVR 的 RAG 功能,构建一个能够回答本地 PDF 文件内容的 AI 应用。示例代码详细演示了从加载 PDF 文件、提取和分割文本、向量化、检索到生成答案的完整流程。LangChain 的优势在于支持多种数据源、易于扩展和替换组件,适合构建复杂原创 2025-05-20 16:25:14 · 429 阅读 · 0 评论 -
LangChain:构建高效LLM应用的终极指南
组件名称功能描述常见类/方法LLM提供语言模型接口ChatOpenAILlamaCpp定义结构化提示词模板Chain将组件组合为可复用流程LLMChainMemory存储对话历史外部功能调用与自动化决策Tool加载与检索文档信息ChromaFAISSLangChain 提供了高度模块化的组件体系,使得开发者可以灵活构建复杂的 LLM 应用。通过结合LLMPromptChainMemoryAgentTool等组件,可以快速实现智能客服、文档问答、数据分析等多种应用场景。原创 2025-05-18 19:29:27 · 928 阅读 · 0 评论 -
LangChain SQL提示词:精准查询指南
项目内容角色定位PostgreSQL 专家,专注于生成正确的 PostgreSQL 查询结果数量使用LIMIT子句,默认返回top_k条记录列选择只查询所需列,用双引号包裹列名列名准确性确保列名存在于表中,注意列所属表日期处理涉及“今天”时,使用函数格式要求固定格式:问题、SQL 查询、SQL 结果、答案表信息仅使用给定的表结构信息通过上述步骤和示例,我们可以清晰地理解如何利用 LangChain 提供的格式化 SQL 提示词模板来生成准确的 SQL 查询并得到最终答案。原创 2025-05-18 07:06:05 · 523 阅读 · 0 评论