
ollama
文章平均质量分 78
爱的叹息
to be or not to be ,this is a question
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python+LangChain+ollama+qwen:0.5b打造智能问答神器
本文介绍了一个基于Python+LangChain+Ollama(Qwen:0.5b模型)的通用问答系统开发方案。系统通过修改原有命名程序的三个核心模块:模型初始化模块、新增的问答处理模块和主函数交互模块,实现了支持中文的自然语言问答功能。文章提供了完整的代码实现(qa_system.py),包括模型加载、问答处理和命令行交互界面,并展示了实际问答示例。最后,作者提出了进阶优化建议,如多模型支持、日志记录、提示工程优化和Web接口开发,以及RAG集成、语音交互等未来扩展方向。该系统可作为本地化智能问答的基础原创 2025-05-30 16:29:18 · 507 阅读 · 0 评论 -
使用Python、LangChain和Ollama本地实现取名程序
本文介绍了使用Python、LangChain和Ollama本地构建命名程序的完整方案。通过安装Ollama本地大模型服务,结合LangChain框架创建适配器,实现根据关键词自动生成名称的功能。该程序支持5个名称的批量生成,并可选扩展为FastAPI Web服务。文章详细展示了从环境配置到核心代码实现的全过程,包括服务检查、提示词设计、名称解析等关键技术点。该方案具有本地运行、可定制性强等特点,适用于企业命名、产品命名等场景,开发者可根据需求进一步优化模型参数和功能扩展。原创 2025-05-30 14:12:39 · 345 阅读 · 0 评论 -
手把手教你用LangChain+Ollama打造本地取名神器
本文详细介绍了如何在一台新安装 Windows 10 的电脑上,使用 LangChain 和本地部署的开源大语言模型(如 tiny-llama 或 phi2)开发一个取名应用。步骤包括安装 Python、Git(可选)、Ollama,拉取轻量级模型,安装 LangChain 及相关依赖,编写 Python 脚本实现取名功能,并最终运行程序。整个过程无需联网或 API 密钥,完全本地运行,适合初学者入门本地 AI 应用开发。文章还提供了扩展建议,如添加 GUI 界面、导出功能等,以增强应用的功能性。原创 2025-05-20 17:23:12 · 947 阅读 · 0 评论