题意:
青蛙a与青蛙b在一条长为l的环上的x点和y点同时向前跳已知青蛙a一次跳m米青蛙b一次跳n米问最少跳几次2个青蛙能相遇。
分析:
根据题意可以列出方程组 (x+m*t)-(y+n*t)=p*---l---① (其中t为跳的次数 p是圈数在第p圈后相遇)
那么可以转化公式①为(n-m)*t+p*l=x-y-----②
这时候联想到扩展gcd ax+by=gcd(a,b)-----③
我们可以令n-m=a t=x p=y l=b x-y=c那么可以得到一个方程 ax+by=c----④
令d=gcd(a,b) 显然对于方程④想要有解需满足c%d==0 因为只有这样才能把④转化为③的形式
我们解出③的一个解x0 那么原方程④的解应该是 x0*(c/d)但是有可能这个解是负数
所以需要x0=(x0%r+r)%r 其中r=l/gcd(a,b) 这样就能得到一个最小正解
ACcode:
#include <iostream>
#include <cstdio>
#define ll long long
using namespace std;
ll extend_gcd(ll a, ll b,ll &x, ll &y){
if(a==0&&b==0)return -1;
if(b==0){x=1;y=0;return a;}
ll d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main(){
ll a,b,m,n,l,x,y;
while(scanf("%I64d%I64d%I64d%I64d%I64d",&a,&b,&m,&n,&l)!=EOF){
ll d=extend_gcd(n-m,l,x,y);
if((a-b)%d||n==m)puts("Impossible");
else {
ll s=l/d;
x=x*((a-b)/d);
x=(x%s+s)%s;
cout<<x<<'\12';
}
}
return 0;
}