poj 1061 青蛙的约会 扩展gcd的简单应用

题意:

青蛙a与青蛙b在一条长为l的环上的x点和y点同时向前跳已知青蛙a一次跳m米青蛙b一次跳n米问最少跳几次2个青蛙能相遇。

分析:

根据题意可以列出方程组 (x+m*t)-(y+n*t)=p*---l---① (其中t为跳的次数 p是圈数在第p圈后相遇)

那么可以转化公式①为(n-m)*t+p*l=x-y-----②

这时候联想到扩展gcd  ax+by=gcd(a,b)-----③

我们可以令n-m=a t=x p=y l=b x-y=c那么可以得到一个方程 ax+by=c----④

令d=gcd(a,b) 显然对于方程④想要有解需满足c%d==0 因为只有这样才能把④转化为③的形式

我们解出③的一个解x0 那么原方程④的解应该是 x0*(c/d)但是有可能这个解是负数

所以需要x0=(x0%r+r)%r 其中r=l/gcd(a,b) 这样就能得到一个最小正解

ACcode:

#include <iostream>
#include <cstdio>
#define ll long long
using namespace std;
ll extend_gcd(ll a, ll b,ll &x, ll &y){
    if(a==0&&b==0)return -1;
    if(b==0){x=1;y=0;return a;}
    ll d=extend_gcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}
int main(){
    ll a,b,m,n,l,x,y;
    while(scanf("%I64d%I64d%I64d%I64d%I64d",&a,&b,&m,&n,&l)!=EOF){
            ll d=extend_gcd(n-m,l,x,y);
            if((a-b)%d||n==m)puts("Impossible");
            else {
                ll s=l/d;
                x=x*((a-b)/d);
                x=(x%s+s)%s;
                cout<<x<<'\12';
            }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值