深度学习pytorch基础

本文介绍了PyTorch中的核心概念——Tensor,包括数据类型如FloatTensor和IntTensor,以及创建方法如torch.rand和torch.randn。此外,文章详细阐述了Tensor的运算,如加法、乘法、矩阵乘法,并展示了如何搭建一个简单的神经网络,通过激活函数ReLU和反向传播更新权重,以直观地理解神经网络的工作原理。
摘要由CSDN通过智能技术生成

pytorch是facebook在深度学习框架torch基础上使用python重写的深度学习框架

安装pytorch便捷方法是登录官网(https://pytorch.org/get-started/locally/)选择匹配的版本进行下载

1. pytorch中的tensor

tensor意为张量,即区别于标量的多维数据

1.1 tensor的数据类型

和numpy差不多,tensor中的数据类型有自己的定义方式

1.1.1 torch.FloatTensor

生成数据为浮点型的tensor,参数可以是一个列表,也可以是一个维度值

import torch
a=torch.FloatTensor(2,3)
print(a)
b=torch.FloatTensor([1,2,3,4])
print(b)

输出如下
在这里插入图片描述

1.1.2 torch.IntTensor

生成整形张量,同理于floattensor

a=torch.IntTensor(3,4)
print(a)
b=torch.IntTensor([2,4,6,8])
print(b)

输出如下:
在这里插入图片描述

1.1.3 torch.rand

生成数据为浮点型指定维度的随机tensor,在0~1之间均匀分布

a=torch.rand(2,3)
print(a)

在这里插入图片描述

1.1.4 torch.randn

生成浮点型指定维度的tensor,满足均值为0,方差为1的正态分布

1.1.5 arange

开始用的是range,不过在版本升级之后官方改成了arange
生成浮点型且指定首尾范围的tensor&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值