CS229机器学习个人笔记(3)——Logistic Regression+Regularization

本文介绍了Logistic Regression在分类问题中的应用,通过Sigmoid函数限制预测值在0到1之间。讨论了逻辑回归的代价函数,由于非线性导致可能存在的多个局部最优解问题。提到了多类分类的One-vs-all策略,并探讨了正则化在防止过拟合和欠拟合中的作用。
摘要由CSDN通过智能技术生成

1.Classification

Logistic Regression其实就是Classification,但是由于历史原因名字被记作了逻辑回归。它与线性回归的区别在于 hθ(x) 被限制在了0与1之间,这是通过下面的S函数(Sigmoid function)实现的: g(z)=11+ez
其中: z=θTx
此时我们的假设函数 h

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值