Logistic回归的主要用途:
寻找危险因素:寻找某一疾病的危险因素等;
预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;
寻找危险因素:寻找某一疾病的危险因素等;
预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;
自变量既可以是连续的,也可以是分类的。
常规步骤
- 寻找h函数(即hypothesis):需要找的分类函数,它用来预测输入数据的判断结果;
- 构造Cost函数(损失函数):该函数表示预测的输出(h)与训练数据类别(y)之间的偏差;
- 构造J函数(J(θ)函数):将Cost求和或者求平均,表示所有训练数据预测值与实际类别的偏差。
- 想办法使得J函数最小并求得回归参数(θ)。
- 构造预测函数h:
-
-
- 下面左图是一个线性的决策边界,右图是非线性的决策边界。
-
-
-
对于线性边界的情况,边界形式如下:
构造预测函数为:
函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为: