logistic Regression & Regularization

本文介绍了逻辑回归的原理和实现,包括构造h函数、Cost函数、J函数以及梯度下降法求解最佳参数。讨论了过拟合问题及其原因,并提出正则化作为解决方案,重点阐述了正则化项在Cost函数中的作用以及不同类型的正则化。最后提到了其他优化算法,如共轭梯度法和拟牛顿法。
摘要由CSDN通过智能技术生成
Logistic回归的主要用途:
寻找危险因素:寻找某一疾病的危险因素等;
预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;

自变量既可以是连续的,也可以是分类的。

常规步骤

  1. 寻找h函数(即hypothesis):需要找的分类函数,它用来预测输入数据的判断结果
  2. 构造Cost函数(损失函数):该函数表示预测的输出(h)与训练数据类别(y)之间的偏差
  3. 构造J函数(J(θ)函数):将Cost求和或者求平均,表示所有训练数据预测值与实际类别的偏差。
  4. 想办法使得J函数最小并求得回归参数(θ)。
  5. 构造预测函数h:


  6. 下面左图是一个线性的决策边界,右图是非线性的决策边界。


  7. 对于线性边界的情况,边界形式如下:

    构造预测函数为:

    函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值