logistic Regression & Regularization

本文介绍了逻辑回归的原理和实现,包括构造h函数、Cost函数、J函数以及梯度下降法求解最佳参数。讨论了过拟合问题及其原因,并提出正则化作为解决方案,重点阐述了正则化项在Cost函数中的作用以及不同类型的正则化。最后提到了其他优化算法,如共轭梯度法和拟牛顿法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Logistic回归的主要用途:
寻找危险因素:寻找某一疾病的危险因素等;
预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;

自变量既可以是连续的,也可以是分类的。

常规步骤

  1. 寻找h函数(即hypothesis):需要找的分类函数,它用来预测输入数据的判断结果
  2. 构造Cost函数(损失函数):该函数表示预测的输出(h)与训练数据类别(y)之间的偏差
  3. 构造J函数(J(θ)函数):将Cost求和或者求平均,表示所有训练数据预测值与实际类别的偏差。
  4. 想办法使得J函数最小并求得回归参数(θ)。
  5. 构造预测函数h:


  6. 下面左图是一个线性的决策边界,右图是非线性的决策边界。


  7. 对于线性边界的情况,边界形式如下:

    构造预测函数为:

    函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:



    构造Cost函数

    Cost函数和J函数如下,它们是基于最大似然估计推导得到的。



下面详细说明推导的过程:

(1)式综合起来可以写成:

取似然函数为:


对数似然函数为:


最大似然估计就是求使取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。但是,在Andrew Ng的课程中将取为下式,即:


因为乘了一个负的系数-1/m,所以取最小值时的θ为要求的最佳参数。

梯度下降法求的最小值

θ更新过程:

 


上式求解过程中用到如下的公式:


θ更新过程可以写成:

 


向量化Vectorization

约定训练数据的矩阵形式如下,x的每一行为一条训练样本,而每一列为不同的特称取值:

g(A)的参数A为一列向量,所以实现g函数时要支持列向量作为参数,并返回列向量。由上式可知可由一次计算求得。

θ更新过程可以改为:


综上所述,Vectorization后θ更新的步骤如下:

(1)求

(2)求

(3)求 

代码分析

图4中是《机器学习实战》中给出的部分实现代码。


图4

sigmoid函数就是前文中的g(z)函数,参数inX可以是向量,因为程序中使用了Python的numpy。

gradAscent函数是梯度上升的实现函数,参数dataMatin和classLabels为训练数据,23和24行对训练数据做了处理,转换成numpy的矩阵类型,同时将横向量的classlabels转换成列向量labelMat,此时的dataMatrix和labelMat就是(18)式中的xy。alpha为学习步长,maxCycles为迭代次数。weights为n维(等于x的列数)列向量,就是(19)式中的θ

29行的for循环将更新θ的过程迭代maxCycles次,每循环一次更新一次。对比3.4节最后总结的向量化的θ更新步骤,30行相当于求了A=x.θg(A),31行相当于求了E=g(A)-y,32行相当于求θ:=θ-α.x'.E。所以这三行代码实际上与向量化的θ更新步骤是完全一致的。

正则化Regularization(还需更新,不透)

过拟合问题

对于线性回归或逻辑回归的损失函数构成的模型,可能会有些权重很大,有些权重很小,导致过拟合(就是过分拟合了训练数据),使得模型的复杂度提高,泛化能力较差(对未知数据的预测能力)。

下面左图即为欠拟合,中图为合适的拟合,右图为过拟合。


问题的主因

过拟合问题往往源自过多的特征。

解决方法

1)减少特征数量(减少特征会失去一些信息,即使特征选的很好)

  • 可用人工选择要保留的特征;
  • 模型选择算法;

2)正则化(特征较多时比较有效)

  • 保留所有特征,但减少θ的大小

正则化方法

正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项或惩罚项。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化项就越大。

从房价预测问题开始,这次采用的是多项式回归。左图是适当拟合,右图是过拟合。


直观来看,如果我们想解决这个例子中的过拟合问题,最好能将的影响消除,也就是让。假设我们对进行惩罚,并且令其很小,一个简单的办法就是给原有的Cost函数加上两个略大惩罚项,例如:


这样在最小化Cost函数的时候,

正则项可以取不同的形式,在回归问题中取平方损失,就是参数的L2范数,也可以取L1范数。取平方损失时,模型的损失函数变为:


lambda是正则项系数:

  • 如果它的值很大,说明对模型的复杂度惩罚大,对拟合数据的损失惩罚小,这样它就不会过分拟合数据,在训练数据上的偏差较大,在未知数据上的方差较小,但是可能出现欠拟合的现象;
  • 如果它的值很小,说明比较注重对训练数据的拟合,在训练数据上的偏差会小,但是可能会导致过拟合。

正则化后的梯度下降算法θ的更新变为:


正则化后的线性回归的Normal Equation的公式为:



其他优化算法

  • Conjugate gradient method(共轭梯度法)
  • Quasi-Newton method(拟牛顿法)
  • BFGS method
  • L-BFGS(Limited-memory BFGS)

后二者由拟牛顿法引申出来,与梯度下降算法相比,这些算法的优点是:

  • 第一,不需要手动的选择步长;
  • 第二,通常比梯度下降算法快;

但是缺点是更复杂。

 

参考

http://blog.csdn.net/dongtingzhizi/article/details/15962797

http://m.blog.csdn.net/article/details?id=51069254

Sure, here is an example Python code for Uplift model with low-rank regularization logistic regression for multiple correlated binary responses: ```python import numpy as np from sklearn.linear_model import LogisticRegression # define the Uplift model with low-rank regularization logistic regression class UpliftLowRankLogisticRegression: def __init__(self, rank=5, alpha=1.0): self.rank = rank self.alpha = alpha self.models = [] self.w = None def fit(self, X, y, t): # calculate the treatment and control groups X_treatment = X[t == 1] y_treatment = y[t == 1] X_control = X[t == 0] y_control = y[t == 0] # fit the logistic regression model for each response for i in range(y.shape[1]): model = LogisticRegression(penalty='l2', C=self.alpha) model.fit(np.hstack((X_treatment, y_treatment[:, i].reshape(-1, 1))), y_treatment[:, i]) self.models.append(model) # use SVD to learn the low-rank representation w U, S, Vt = np.linalg.svd(y_control - self.predict(X_control)) self.w = Vt[:self.rank].T def predict(self, X): # calculate the uplift score for each response uplift_scores = np.zeros((X.shape[0], len(self.models))) for i, model in enumerate(self.models): uplift_scores[:, i] = model.predict_proba(X)[:, 1] # calculate the predicted response for the control group y_control_pred = np.dot(X, self.w) # calculate the predicted response for the treatment group y_treatment_pred = y_control_pred + uplift_scores # return the predicted response matrix return np.vstack((y_control_pred, y_treatment_pred)) ``` The `UpliftLowRankLogisticRegression` class takes two hyperparameters: `rank` for the rank of the low-rank representation w and `alpha` for the regularization strength of logistic regression. In the `fit` method, the treatment and control groups are separated, and logistic regression models are fitted for each response using the treatment group. Then, SVD is used to learn the low-rank representation w from the predicted responses of the control group. In the `predict` method, the uplift scores for each response are calculated using the logistic regression models and added to the predicted responses of the control group to obtain the predicted responses of the treatment group. The predicted response matrix is returned by stacking the predicted responses of the control and treatment groups vertically.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值