338. Counting Bits
Description:
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Note:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Difficulty:Medium
Example:
Input: 5
Output: [0,1,1,2,1,2]
方法1:Dynamic Programming 1
- Time complexity : O ( n ) O\left ( n \right ) O(n)
- Space complexity :
O
(
n
)
O\left ( n \right )
O(n)
思路:
根据题目要求,肯定需要动态规划了,找子问题的解。
通过找规律可以发现dp[i] = dp[i - pow(2,j-1)] + 1
满足```i < pow(2, j)``的条件下成立
通俗点讲,4到7是0到3都加1得来的。
dp1 = 1
dp2 = 1
dp3= dp+1
dp4 = 1
dp5 = dp1+1
dp6 = dp2+1
dp7 = dp3+1
dp8 = 1
dp9 = dp1+1
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res(num+1, 0);
int j = 1;
for(int i = 1; i < num+1; i++){
if(i < pow(2, j)) res[i] = res[i - pow(2,j-1)] + 1;
else{
j++;
res[i] = 1;
}
}
return res;
}
};
方法2:Dynamic Programming 2
- Time complexity : O ( n ) O\left ( n \right ) O(n)
- Space complexity :
O
(
n
)
O\left ( n \right )
O(n)
思路:
这个思路就是找规律找得更精髓了:dp[i] = dp[i & (i-1)] + 1
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res(num+1, 0);
for (int i = 1; i <= num; ++i)
res[i] = res[i&(i-1)] + 1;
return res;
}
};