【LeetCode】338. Counting Bits

338. Counting Bits

Description:
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Note:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Difficulty:Medium

Example:

Input: 5
Output: [0,1,1,2,1,2]
方法1:Dynamic Programming 1
  • Time complexity : O ( n ) O\left ( n \right ) O(n)
  • Space complexity : O ( n ) O\left ( n \right ) O(n)
    思路
    根据题目要求,肯定需要动态规划了,找子问题的解。
    通过找规律可以发现dp[i] = dp[i - pow(2,j-1)] + 1满足```i < pow(2, j)``的条件下成立
    通俗点讲,4到7是0到3都加1得来的。
dp1 = 1
dp2 = 1
dp3= dp+1
dp4 = 1
dp5 = dp1+1
dp6 = dp2+1
dp7 = dp3+1
dp8 = 1
dp9 = dp1+1
class Solution {
public:
    vector<int> countBits(int num) {
        vector<int> res(num+1, 0);
        int j = 1;
        for(int i = 1; i < num+1; i++){
            if(i < pow(2, j)) res[i] = res[i - pow(2,j-1)] + 1;
            else{
                j++;
                res[i] = 1;
            }
        }
        return res;
    }
};
方法2:Dynamic Programming 2
  • Time complexity : O ( n ) O\left ( n \right ) O(n)
  • Space complexity : O ( n ) O\left ( n \right ) O(n)
    思路
    这个思路就是找规律找得更精髓了: dp[i] = dp[i & (i-1)] + 1
class Solution {
public:
    vector<int> countBits(int num) {
        vector<int> res(num+1, 0);
        for (int i = 1; i <= num; ++i)
            res[i] = res[i&(i-1)] + 1;
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值