目录
基本信息
代码连接:https://github.com/cognav/neuroslam
论文连接:NeuroSLAM: a brain-inspired SLAM system for 3D environments
文章信息
1. 这篇论文解决了什么问题?
解决了传统SLAM系统功耗大、智能性过低和鲁棒性过低的问题;
2. 关于这个问题,其它学者提出了哪几类的解决方案,有何缺陷?
RatSLAM:RatSLAM系统使用啮齿动物海马的计算模型执行基于视觉的SLAM。RatSLAM能够在室内和室外环境中执行实时在线SLAM。
3. 作者围绕该问题,是如何构建解决思路的?
- 提出了一个新的神经启发模型,用于在大型的、真实的三维环境中进行建图和定位;
- 建立了一个由三维网格细胞和多层头朝向细胞组成的联合位姿细胞的计算模型,用于表示4DoF位姿(x, y, z, yaw);
- 提出了结合局部视觉细胞、三维栅格细胞、多层头朝向细胞以及三维视觉里程计的多层graphical experience map;
- 提出使用三种3D mapping 真实世界和合成数据集,包括室内外场景,评估了NeuroSLAM的性能。
4. 哺乳动物的三维空间表示
- 3D place cells :当哺乳动物经过某个3D空间位置时,该3D位置细胞会选择性放电,形成所有三维的度量地图;
- 3D headdirection cells:三维头方向细胞响应方位角x俯仰的特定组合,从而表示三维空间中头矢量的方向;
- 3D grid cells:三维网格细胞将呈现规则的三维网格模式,用于三维路径集成所需的三维位置、方向和度量信息。
4.1 三维栅格细胞
- 栅格细胞具有周期性的六边形放电场,与动物运动的方向和速度无关;
- 栅格细胞可以提供用于导航的度量空间表示;
- 栅格细胞可能会基于自身运动累积地进行路径整合;
4.2 头方向细胞
三维头部方向细胞可以在3D空间中以roll,yaw,pitch或其组合来表示动物的方向。本文中,我们只考虑方位角来表示4DoF位姿,并使用多层头部方向细胞模型来表示机器人方向。
4.3 多维度连续吸引子网络
多维连续吸引子网络(MD-CAN)是空间神经细胞建模的重要方法。主要有以下特性:
- MD-CAN是一种具有加权兴奋和抑制连接的神经网络;
- MD-CAN有很多循环连接,这些连接导致网络在没有外部输入的情况下,随时间推移收敛到某些稳定状态;
- MD-CAN通过更新神经活动进行操作;
- MD-CAN中的每个神经单元在0到1之间有一个连续的激活值,当机器人接近空间位置时,相关神经单元的激活值增大。
5. NeuroSLAM框架
NeuroSLAM系统的结构如下图所示。
(1) 联合位姿细胞包括三维栅格细胞和多层头朝向细胞。根据自运动线索可以更新联合位姿细胞的活性,当遇到熟悉场景时,通过局部视觉线索可以校准联合位姿细胞的活性。在MD-CAN中,通过将活性注入联合位姿细胞来实现路径积分。因此,当前的活动包会根据三维视觉里程计进行移位。当遇到熟悉视觉线索,局部视觉细胞被激活,通过联想学习将该活动从注入特定的联合位姿细胞中,从而实现路径积分。
(2) 多层经验图用于表示三维空间experience。一个特定的三维空间experience通过conjunctive code结合一系列的视觉细胞,多层头朝向细胞、三维栅格细胞以及自运动线索信息编码实现。我们通过局部视图细胞和联合位姿细胞的活动模式定义了一个独立的三维空间experience,当模式发生改变时,我们会创建一个新的三维空间experience,同时,会创建一个从旧的experience到新experience的新的transition,这个transition包含两个experience的4DoF位姿的变化。当机器人在一个新环境中移动时,新的三维experience和transition会不断形成。当机器人重新回到一个熟悉的场景,如果conjunctive code与之前存储的相同,就会产生回环。多层地图的松弛被用来保持拓扑的一致性。