埃氏筛有重复筛取的问题,所以时间复杂度是O(nlglgn),可以使用线性筛加快速度,每个合数只标记一次
参考:
https://blog.csdn.net/sodacoco/article/details/81519269
https://blog.csdn.net/qq_41653433/article/details/88976544
https://blog.csdn.net/qq_40515553/article/details/79365871
一个合数可以分解成唯一分解,然后将它的最小质因子看作一个因子,剩下的看作另一个因子,这种分解是唯一的,所以就可以对一个合数只标记一次
const int maxn=100000;
int vis[maxn+10],prime[maxn],pn=0;
fill(vis,vis+maxn+10,1);
for(int i=2;i<maxn;++i){
if(vis[i]==1) prime[pn++]=i;
for(int j=0;j<pn && 1LL*i*prime[j]<maxn;++j){
vis[i*prime[j]]=0; //i*prime[j]的最小质因子是prime[j]
if(!i%prime[j]) break; //如果能够整除,说明i*prime[j+1]的最小质因子一定小于等于prime[j],所以跳出
}
}
欧拉函数 莫比乌斯函数使用线性筛打表:https://www.cnblogs.com/lfri/p/11679306.html
const int maxn=100000;
int vis[maxn+10],prime[maxn],pn=0,phi[maxn],mob[maxn];
void get_table(){
fill(vis,vis+maxn+10,1);
for(int i=0;i<maxn;++i){
if(vis[i]==1){
prime[pn++]=i;
phi[i]=i-1;
mob[i]=-1;
}
for(int j=0;j<pn && 1LL*i*prime[j]<maxn;++j){
vis[i*prime[j]]=0;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
mob[i*prime[j]]=0;
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-1);
mov[i*prime[j]]=-mib[i];
}
}
}