线性筛法

埃氏筛有重复筛取的问题,所以时间复杂度是O(nlglgn),可以使用线性筛加快速度,每个合数只标记一次
参考:
https://blog.csdn.net/sodacoco/article/details/81519269
https://blog.csdn.net/qq_41653433/article/details/88976544
https://blog.csdn.net/qq_40515553/article/details/79365871

一个合数可以分解成唯一分解,然后将它的最小质因子看作一个因子,剩下的看作另一个因子,这种分解是唯一的,所以就可以对一个合数只标记一次

const int maxn=100000;
int vis[maxn+10],prime[maxn],pn=0;
fill(vis,vis+maxn+10,1);
for(int i=2;i<maxn;++i){
	if(vis[i]==1) prime[pn++]=i;
	for(int j=0;j<pn && 1LL*i*prime[j]<maxn;++j){
		vis[i*prime[j]]=0;    //i*prime[j]的最小质因子是prime[j]
		if(!i%prime[j]) break;   //如果能够整除,说明i*prime[j+1]的最小质因子一定小于等于prime[j],所以跳出
	}
}

欧拉函数 莫比乌斯函数使用线性筛打表:https://www.cnblogs.com/lfri/p/11679306.html

const int maxn=100000;
int vis[maxn+10],prime[maxn],pn=0,phi[maxn],mob[maxn];
void get_table(){
	fill(vis,vis+maxn+10,1);
	for(int i=0;i<maxn;++i){
		if(vis[i]==1){
			prime[pn++]=i;
			phi[i]=i-1;
			mob[i]=-1;
		}
		for(int j=0;j<pn && 1LL*i*prime[j]<maxn;++j){
			vis[i*prime[j]]=0;
			if(i%prime[j]==0){
				phi[i*prime[j]]=phi[i]*prime[j];
				mob[i*prime[j]]=0;
				break;
			}
			phi[i*prime[j]]=phi[i]*(prime[j]-1);
			mov[i*prime[j]]=-mib[i];
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值