问题
https://vjudge.net/problem/UVA-1382
分析
不能使用暴利的方法枚举,需要O(n^5)的时间,太多了。
只枚举矩形的上下边界,然后通过维护的方法计算最优的左右边界。
这题逻辑比较麻烦,尤其是点是否在交点处
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
typedef long long LL;
const int maxn=100+5;
struct Point{
int x,y;
bool operator < (const Point &rhs) const {
return x<rhs.x;
}
}point[maxn];
int n,m,y[maxn],on[maxn],on2[maxn],Left[maxn];
int solve(){
sort(point,point+n);
sort(y,y+n);
m=unique(y,y+n)-y;
if(m<=2) return n; //最多两种不同的y坐标
int ans=0;
for(int a=0;a<m;++a){
for(int b=a+1;b<m;++b){
int ymin=y[a],ymax=y[b];
int k=0;
for(int i=0;i<n;++i){
if(i==0 || point[i].x!=point[i-1].x){
k++;
on[k]=on2[k]=0;
Left[k]=(k==0)?0:Left[k-1]+on2[k-1]-on[k-1]; //这地方的计算比较巧妙
}
if(point[i].y>ymin && point[i].y<ymax) on[k]++;
if(point[i].y>=ymin && point[i].y<=ymax) on2[k]++;
}
if(k<=2) return n; //最多两种不同的x坐标
int M=0;
for(int j=1;j<=k;++j){
ans=max(ans,Left[j]+on2[j]+M);
M=max(M,on[j]-Left[j]);
}
}
}
return ans;
}
int main(void){
int kase=0;
while(scanf("%d",&n)==1 && n){
for(int i=0;i<n;++i){
scanf("%d%d",&point[i].x,&point[i].y);
y[i]=point[i].y;
}
printf("Case %d: %d\n",++kase,solve());
}
return 0;
}