UVA - 1366 Martian Mining

本文介绍了一种使用递推动态规划(DP)的方法来解决一个特定的矿物运输问题,该问题要求在二维矩阵中找到从任意位置出发,沿着水平或垂直方向运输最多矿物的路径。文章详细阐述了状态定义、状态转移方程,并提供了完整的C++代码实现。
摘要由CSDN通过智能技术生成

问题

https://vjudge.net/problem/UVA-1366

分析

递推DP,dp[i][j]表示右下角坐标[i,j]的矩形能够运出最多的矿物是多少
状态转移: dp[i][j]=max(dp[i][j-1]+B[j][i],dp[i-1][j]+A[i][j]);
B[j][i]表示从[i][j]向上运输一条线上一共能够输出的B中矿物
A[i][j]是从[i][j]从右向左运输运出的A类矿物

代码

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long LL;
const int maxn=500+5;
int n,m,grapha[maxn][maxn],graphb[maxn][maxn],suma[maxn][maxn],sumb[maxn][maxn],dp[maxn][maxn];
int main(void){
    while(scanf("%d%d",&n,&m)==2 && n){
        for(int i=1;i<=n;++i){
            for(int j=1;j<=m;++j){
                scanf("%d",&grapha[i][j]);
                suma[i][j]=suma[i][j-1]+grapha[i][j];
            }
        }
        for(int i=1;i<=n;++i){
            for(int j=1;j<=m;++j){
                scanf("%d",&graphb[i][j]);
                sumb[i][j]=sumb[i-1][j]+graphb[i][j];
            }
        }

        for(int i=1;i<=n;++i){
            for(int j=1;j<=m;++j){
                dp[i][j]=max(dp[i-1][j]+suma[i][j],dp[i][j-1]+sumb[i][j]);
            }
        }
        printf("%d\n",dp[n][m]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值