当我们在求a^b,即a的b次方时,我们轻易的就会想到使用for循环将a个连续相乘求到我们想要的结果
long long normalPower(long long base,long long power){
long long result=1;
for(int i=1;i<=power;i++){
result=result*base;
}
return result;
}
对于一些题目
求a^b的最后三位表示的数字
这题其实好办,只要对1000取模就成
但我们都知道,指数会呈现爆炸式增长
假如我们的b是一个比较大的数字,大到用long long都可能会溢出
比如2^100
对于这样的情况,结果都无法求出来,让我怎么进行“取模”运算呢?你这不是瞎闹吗?
于是我们引入公式
(a * b) % p = (a % p * b % p) % p
将程序改进
long long normalPower(long long base,long long power){
long long result=1;
for(int i=1;i<=power;i++){
result=result*base;
result=result%1000;
}
return result%1000;
}
如此一来,问题的确得到了解决,但是新的问题又来了,这样的算法运算的效率是相当差劲的,于是我们进入这篇文章的重点,如何提高上述代码的运算效率?
于是我们可以想到幂的运算公式
28=(22)4=(42)2=162=256
这样便节约了计算时间
如果b是奇数,我们也可以特判,分离出来一个,如:
29=(22)4*2=(42)2*2=162*2
思路清奇,改进代码
long long fastPower(long long base, long long power) {
long long result = 1;
while (power > 0) {
if (power % 2 == 1) {
result = result * base % 1000;
}
power = power / 2;
base = (base * base) % 1000;
}
return result;
}
}
到这里基本已经很高效了,但是通过二进制的位运算还可以进一步优化
long long fastPower(long long base, long long power) {
long long result = 1;
while (power > 0) {
if (power & 1) {//此处等价于if(power%2==1)
result = result * base % 1000;
}
power >>= 1;//此处等价于power=power/2
base = (base * base) % 1000;
}
return result;
}
参考资料.