快速幂算法

当我们在求a^b,即a的b次方时,我们轻易的就会想到使用for循环将a个连续相乘求到我们想要的结果

long long normalPower(long long base,long long power){
    long long result=1;
    for(int i=1;i<=power;i++){
        result=result*base;
    }
    return result;
}

对于一些题目

求a^b的最后三位表示的数字

这题其实好办,只要对1000取模就成
但我们都知道,指数会呈现爆炸式增长
假如我们的b是一个比较大的数字,大到用long long都可能会溢出
比如2^100
对于这样的情况,结果都无法求出来,让我怎么进行“取模”运算呢?你这不是瞎闹吗?
于是我们引入公式

(a * b) % p = (a % p * b % p) % p 

将程序改进

long long normalPower(long long base,long long power){
    long long result=1;
    for(int i=1;i<=power;i++){
        result=result*base;
        result=result%1000;
    }
    return result%1000;
}

如此一来,问题的确得到了解决,但是新的问题又来了,这样的算法运算的效率是相当差劲的,于是我们进入这篇文章的重点,如何提高上述代码的运算效率?
于是我们可以想到幂的运算公式

28=(22)4=(42)2=162=256

这样便节约了计算时间
如果b是奇数,我们也可以特判,分离出来一个,如:

29=(22)4*2=(42)2*2=162*2

思路清奇,改进代码

long long fastPower(long long base, long long power) {
    long long result = 1;
    while (power > 0) {
        if (power % 2 == 1) {
            result = result * base % 1000;
        }
        power = power / 2;
        base = (base * base) % 1000;
    }
    return result;
}
}

到这里基本已经很高效了,但是通过二进制的位运算还可以进一步优化

long long fastPower(long long base, long long power) {
    long long result = 1;
    while (power > 0) {
        if (power & 1) {//此处等价于if(power%2==1)
            result = result * base % 1000;
        }
        power >>= 1;//此处等价于power=power/2
        base = (base * base) % 1000;
    }
    return result;
}

参考资料.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值