题目大意是这样的,给定a1,a2,...am,求从1到n的整数中至少能整除a中一个元素的数有几个?
输入:
n =100,m=2;
a={2,3};
输出:
67
输入:
n=100,m=3;
a={2,3,7}
输出:
72
因为这个学期学的离散,包含容斥原理印象还是挺深的,对这个也挺感兴趣,不知道有多少人在看挑战程序设计竞赛这本书,前面的费马小定理,线性同余方程组啥的。。。。因为没有学习数论,根本看不懂。。。唉。。。。。。有没有个大神可以教教我数论额。。。。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#define maxn 500
using namespace std;
int n,m;
int x[maxn];
int gcd(int a,int b)
{
if (b>a)
{
int temp=a;
a=b;
b=temp;
}
if (b==0)return a;
return gcd(b,a%b);
}
int Rong_Chi()
{
int res=0;
for (int i=1;i<1<<m;i++)/*这个运用的是位运算,把所有子集的情况表示成集合,每个二进制中的1代表列出的子集,假设m为3
,则正好有7中情况需要计算*/
{
int num=0;
for (int j=i;j!=0;j>>=1)
{
if (j&1)num++;
}
int value=1;
for (int j=0;j<m;j++)
{
if (i>>j&1)
{
value=value/(gcd(value,x[j]))*x[j];/*这是求最小公倍数,假设当前是算3个子集的交集,
先算1与第一个的最小公倍数,再算这个最小公倍数与第二个,继续下去,这样算完之后就是这三个子集的最小公倍数*/
}
if (value>n)break;
}
if (num%2==0)/*根据包含容斥原理,偶数的是需要减去的,奇数是需要加上的*/
{
res-=n/value;
}
else
{
res+=n/value;
}
}
return res;
}
int main()
{
while(cin>>n>>m)
{
for (int i=0;i<m;i++)
{
scanf("%d",&x[i]);
}
int now=Rong_Chi();
cout<<now<<endl;
}
return 0;
}