包含容斥原理【题目在挑战程序设计竞赛】

      题目大意是这样的,给定a1,a2,...am,求从1到n的整数中至少能整除a中一个元素的数有几个?

输入:

n =100,m=2;

a={2,3};

输出:

67

输入:

n=100,m=3;

a={2,3,7}

输出:

72

      因为这个学期学的离散,包含容斥原理印象还是挺深的,对这个也挺感兴趣,不知道有多少人在看挑战程序设计竞赛这本书,前面的费马小定理,线性同余方程组啥的。。。。因为没有学习数论,根本看不懂。。。唉。。。。。。有没有个大神可以教教我数论额。。。。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#define maxn 500
using namespace std;
int n,m;
int x[maxn];
int gcd(int a,int b)
{
    if (b>a)
    {
       int temp=a;
        a=b;
        b=temp;
    }
    if (b==0)return a;
    return gcd(b,a%b);
}
int Rong_Chi()
{
    int res=0;
    for (int i=1;i<1<<m;i++)/*这个运用的是位运算,把所有子集的情况表示成集合,每个二进制中的1代表列出的子集,假设m为3
        ,则正好有7中情况需要计算*/
    {
        int num=0;
        for (int j=i;j!=0;j>>=1)
        {
            if (j&1)num++;
        }
        int value=1;
        for (int j=0;j<m;j++)
        {
            if (i>>j&1)
            {
                value=value/(gcd(value,x[j]))*x[j];/*这是求最小公倍数,假设当前是算3个子集的交集,
                先算1与第一个的最小公倍数,再算这个最小公倍数与第二个,继续下去,这样算完之后就是这三个子集的最小公倍数*/
            }
            if (value>n)break;
        }
        if (num%2==0)/*根据包含容斥原理,偶数的是需要减去的,奇数是需要加上的*/
        {
            res-=n/value;
        }
        else
        {
            res+=n/value;
        }
    }
    return res;
}
int main()
{
    while(cin>>n>>m)
    {
        for (int i=0;i<m;i++)
        {
            scanf("%d",&x[i]);
        }
        int now=Rong_Chi();
        cout<<now<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值