【深度学习】使用Anaconda和PyTorch在无显卡Windows系统上配置强化学习环境

1. 安装Anaconda

  1. Anaconda官网下载Windows安装包(Python 3.x版本),磁盘资源充足的情况下推荐 Anaconda Distribution,而不是Miniconda Installers
  2. 运行安装程序,选择默认选项
  3. 验证安装:打开Anaconda PowerShell Prompt,输入conda --version验证安装

在这里插入图片描述

2. 创建虚拟环境

# 创建名为"rl_env"的环境,指定Python版本
conda create -n rl_env python=3.9

# 激活环境
conda activate rl_env

3. 安装PyTorch(CPU版本)

在Anaconda Prompt中执行:

# 安装CPU版本的PyTorch(2.0.1为稳定版本)
conda install pytorch torchvision torchaudio cpuonly -c pytorch

4. 安装强化学习库

# 基础RL库
pip install gymnasium #强化学习环境,仅核心库
# pip install gymnasium[all]        # 全部库,时间较久,且Box2D环境需要Microsoft Visual C++,视需求补装

pip install stable-baselines3[extra]  # 策略梯度算法

# 高级库(可选)
pip install ray[rllib]          # 分布式RL框架
pip install pettingzoo[all]     # 多智能体环境

5. 安装辅助工具

# 可视化与数据处理
pip install matplotlib seaborn pandas
pip install jupyter notebook    # 交互式开发

6. 验证配置

在vscode中按 Ctrl+Shift+P 打开命令面板,输入 Python: Select Interpreter
在列表中选择我们建立的 rl_env 环境
在这里插入图片描述

在Python中运行以下代码:

import torch
import gymnasium as gym
from stable_baselines3 import PPO

# 检查GPU是否禁用
print(f"PyTorch GPU可用: {torch.cuda.is_available()}")  # 应输出False

# 测试环境
env = gym.make("CartPole-v1")
obs, _ = env.reset()

# 测试模型创建
model = PPO("MlpPolicy", env, verbose=1)

print("环境和模型初始化成功!")

注意终端类型
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值