【开发工具】科研开发中的主流AI工具整理及如何使用GPT润色英文论文

一、主流AI工具

(2025的华为软件精英挑战赛中设置了最佳大模型应用奖,奖励合理使用大模型加速开发的队伍,说明用人单位正在把是否擅长使用AI大模型技术辅助开发作为一种新的考察内容或加分项)
AI技术发展至今已经逐渐成熟,并可以取代一部分科研和开发中的简单工作,并为复杂工作提高辅助,除此之外也是更高级的信息检索工具。熟练掌握 AI 工具在当前市场理应具有竞争优势,目前笔者在科研和开发中接触过AI工具的使用体验整理如下:

1. 通用对话工具

在这里插入图片描述

  • DeepSeek
    使用体验:推理能力突出,适合大部分科研场景,且对提示词的要求较低,似乎是通过对问题的解析分类递交到内部封装的各种专家,从而有更好的推理和生成效果。
    使用局限:官网经常网络繁忙,但可以通过其他AI平台接入解决;文件读取有字数限制,无法解析复杂代码或文本;复杂问题的思考时间过长无法给出回答。

  • 腾讯元宝、问小白
    使用体验:接入了DeepSeek R1,不会遇到网络问题且免费使用。
    使用局限:但是他们自身的大模型,如腾讯的混元大模型主要优势在于内容创作,因为接入了公众号文章等资源,元石大模型偏向日常搜索,在科研和开发中的使用体验不如其接入的DeepSeek R1。

在这里插入图片描述

  • 豆包(字节跳动)
    使用体验:问题的响应较快,适合提问简单问题,如概念、术语等;文献阅读功能非常好用,会生成中英文对照版本且翻译更准确;客户端的一键唤起功能可以比较快速地提问简单问题;文件上传功能方便,且会有云盘记录。
    使用局限:语文不太行,即使有提示词,写文字段落时的表达也明显浮夸或口语化,学术性和专业性不足。

  • ChatGPT
    使用体验:英文很好,适合用于英文写作,润色英文段落比较地道。
    使用局限:免费版本目前觉得越来越懒,疑似算力限制,在开发问题的解答上不如国产大模型。

  • 通义千问(阿里)、文心一言(百度)
    使用体验:曾经先后作为国内早期知名大模型。
    使用局限:目前在学术和开发用途上并未有突出优势。

2. 垂直领域工具

在这里插入图片描述

  • Cursor(编程)
    使用体验:类似于vscode的代码编辑器界面,可以对整个工程代码进行解析和问答,Claude模型在编程方面也是更好用。
    使用局限:已经有常用的编辑器再使用Cursor会有些冲突,只是偶尔需要全局提问时候用一下。

  • Kimi(长文本处理)
    使用体验:有同门说体验不错,个人没有选择。
    使用局限:PPT生成功能一言难尽,比较粗糙。

  • 秘塔AI搜索(知识管理)
    使用体验:加强版的AI搜索引擎,输出有条理性的检索内容。
    使用局限:对话不能被自动保存,比较不习惯。


根据要求已对原文进行优化调整,去除主观比较和宣传性表述,保持客观描述,并整理总结表格如下:

主流AI工具功能对比表

分类工具名称核心功能定位主要优势功能限制
通用对话工具DeepSeek科研推理辅助问题解析能力较强,支持多场景推理文件字数限制,长耗时问题响应延迟
腾讯元宝/问小白综合内容服务免费稳定访问,集成多源知识库专业领域解析深度有限
豆包(字节跳动)文献处理与快速查询文献翻译准确,支持云盘文件管理生成文本学术严谨性待提升
ChatGPT英文写作优化英文润色效果突出免费版代码开发支持能力有限
通义千问/文心一言基础智能问答早期具有较高市场认知度专业场景功能特色不显著
垂直领域工具Cursor代码工程分析支持项目级代码解析,编程辅助需独立开发环境
Kimi长文本处理长上下文理解能力较强PPT生成功能尚待优化
秘塔AI搜索知识检索增强结构化信息呈现能力突出对话记录管理功能缺失

二、AI提问技巧:以论文润色为例

1. 背景说明法

通过【topic】【discipline】构建学术场景,触发AI的领域适配机制(如自动调用Nature/Science语料库)

I’m writing a paper on 【topic】 for a leading 【discipline】 academic journal. What I tried to say in the following section is 【specific point】. Please rephrase it for clarity, coherence and conciseness, ensuring each paragraph flows into the next. Remove jargon. Use a professional tone

2. 段落衔接指令

“clarity, coherence, conciseness” 精准对应学术写作三大痛点,比通用型指令效率提升很多;“clarity and logical flow”能激活GPT的篇章结构分析能力,避免逐句修改的碎片化问题

Please help me polish the paragraph in the Design section of journal article to enhance its clarity and logical flow:

三、Cursor的使用

1.下载

官网下载即可,注册后免费使用(目前没遇到试用期到期无法使用的问题)
https://www.cursor.com/cn

2.提问

ctrl + L唤起右边侧提问界面,默认对当前代码文件提问,但是识别到该问题需要其他代码文件时候,会自动读取其他文件:
在这里插入图片描述

<think>好的,用户让我介绍一下写作类Agent的框架,我需要先理清楚这个主题的关键点。首先,写作类Agent是什么?应该是指利用人工智能技术辅助或自动化完成写作任务的智能体。接下来,用户可能想知道这类框架的基本组成部分、工作原理、应用场景以及现有的例子。 我需要先分解框架的结构。通常一个Agent会有输入处理、内容生成、优化调整、输出模块等部分。可能还需要知识库和反馈机制。然后每个部分具体怎么运作?比如输入处理可能涉及自然语言理解,识别用户的需求;内容生成可能用到大模型,像GPT之类的;优化调整可能包括风格检查、语法纠正等。 然后要考虑应用场景,比如商业文案、创意写作、学术论文等,不同场景可能需要不同的模块配置。现有的例子比如Jasper、Copy.ai,或者学术写作工具,这些可以作为实例来增强说明。 还要注意用户可能的深层需求。他们可能想知道如何选择或构建这样的Agent,或者了解其局限性。不过用户的问题主要是介绍框架,所以重点放在结构和工作流程上。 需要确保结构清晰,分点说明,使用例子帮助理解。同时避免技术术语过于复杂,保持中文口语化。最后检查是否符合之前的系统指令,比如数学公式的格式是否正确,但这里可能用不到数学公式,但需要确认中文回答和格式要求。</think>以下是对写作类Agent框架的系统性介绍,采用分层结构说明其核心模块和运作逻辑: --- ### 一、框架构成 写作类Agent通常由 **输入层→处理层→输出层→反馈层** 四大模块构成,辅以知识库与规则引擎: ``` $$ \text{Agent框架} = \left[ \begin{array}{c} \text{用户意图识别} \\ \text{内容生成引擎} \\ \text{风格优化器} \\ \text{多模态输出} \\ \end{array} \right] + \text{(领域知识库+质量校验规则)} $$ ``` ### 二、核心模块详解 #### 1. 输入解析层 - **功能**:通过自然语言处理(NLP)识别用户需求 - 关键技术: - 意图分类(例如区分「广告文案」与「科研论文」) - 实体抽取(提取关键词:$T=\{主题,风格,长度\}$) - 语境理解(分析隐含需求:$C \subseteq \{情感倾向,文化禁忌\}$) #### 2. 内容生成引擎 - **架构**: ```mermaid graph LR A[大语言模型] --> B[模板适配] B --> C[事实核查] C --> D[逻辑连贯性检测] ``` - 典型工作流: 1. 调用基础模型(如GPT-4)生成初稿 2. 注入领域知识(例如法律文书专用术语库) 3. 应用约束条件(如品牌文案的$品牌声量 \geq 阈值$) #### 3. 优化调整系统 - **质量维度**: - 语法正确性(检测并修正$\exists 错误 \in 句子结构$) - 风格一致性(计算文本特征向量$\vec{v}$与目标风格的余弦相似度) - 可读性优化(应用Flesch-Kincaid公式:$0.39 \frac{总单词}{总句子} + 11.8 \frac{总音节}{总单词} -15.59$) #### 4. 多模态输出 - 支持格式:Markdown/LaTeX/富文本 - 扩展能力:图文混排(生成符合$图片分辨率 \geq 1080p$的插图建议) ### 三、技术挑战与解决方案 | 挑战类型 | 典型案例 | 应对方案 | |---------|----------|---------| | 事实准确性 | 历史年代错误 | 构建领域知识图谱$G=(V,E)$并设置实时校验 | | 创意瓶颈 | 文案同质化 | 引入随机扰动因子$\epsilon \sim N(0,1)$ | | 伦理风险 | 偏见传播 | 设置敏感词过滤矩阵$M_{n×n}$ | ### 四、典型应用场景 1. **商业写作**:广告语生成(要求满足$转化率 \propto 文案吸引力$) 2. **学术写作**:论文润色(优化$\frac{专业术语}{总词数}$比例) 3. **创意写作**:故事情节扩展(确保$角色行为 \in 人设约束集$) ### 五、前沿发展方向 - 动态风格迁移:实现文本风格$S_t \xrightarrow{} S_{t+1}$的连续演化 - 多Agent协作:建立写作联盟$\{Agent_i\}_{i=1}^n$的分工机制 - 认知增强:融合神经符号系统处理$\frac{感性表达}{理性论证}$的平衡问题 --- 通过这种模块化设计,写作类Agent既能保证内容产出的基础质量,又能通过参数调整适配不同场景需求。当前主流框架如Copy.ai、Sudowrite等均在此架构基础上进行特定优化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值