【CFD理论】扩散项-02

非正交修正

最小修正(minimum correction)
正交修正(orthogonal correction)
超松弛 (over-relaxed)

非正交 non orthogonal

扩散项有限体积法回顾:
∫ V ( ∇ ⋅ ( D ∇ ϕ ) + Q ) d V = 0 ⇒ ∑ f ∫ f D ∇ ϕ ⋅ d S + Q p V p = 0 ⇒ ∑ f D ( ∇ ϕ ) f ⋅ S f + Q p V P = 0 \begin{aligned} & \int_V (\nabla \cdot (D\nabla\phi)+Q)dV=0\\ &\Rightarrow \sum_f \int_f D\nabla \phi \cdot d\boldsymbol S+Q_pV_p=0\\ &\Rightarrow \sum_f D(\nabla \phi)_f \cdot \boldsymbol S_f+Q_pV_P=0 \end{aligned} V((Dϕ)+Q)dV=0ffDϕdS+QpVp=0fD(ϕ)fSf+QpVP=0

skewness和non-orthogonal的区别

在这里插入图片描述
在这里插入图片描述
网格正交的扩散项
( ∇ ϕ ) ⋅ S f ⃗ = ∣ S f ⃗ ∣ ( ϕ N − ϕ P ) ∣ d P N ⃗ ∣ (\nabla\phi)\cdot \vec{S_f}=\frac{\left|\vec{S_f}\right|(\phi_N-\phi_P)}{\left|\vec{d_{PN}}\right|} (ϕ)Sf = dPN Sf (ϕNϕP)

三种分解方法:

  1. 最小修正(minimum correction)
  2. 正交修正(orthogonal correction)
  3. 超松弛(over-relaxed)

minimum correction在这里插入图片描述

在这里插入图片描述
S f = Δ ⃗ + k ⃗ Δ ⃗ = ∣ S ⃗ f ∣ ⋅ c o s θ ⋅ P N ⃗ ∣ P N ∣ ( ∇ ϕ ) f ⋅ S f = ( ∇ ϕ ) f ⋅ Δ + ( Δ ϕ ) f ⋅ k \begin{aligned} & \boldsymbol S_f=\vec \Delta + \vec k \\ & \vec \Delta=\left| \vec S_f\right|\cdot cos \theta \cdot \frac{\vec {PN}}{\left | PN\right |}\\ &(\nabla \phi)_f \cdot \boldsymbol S_f\\ &=(\nabla\phi)_f\cdot \Delta+(\Delta \phi)_f\cdot \boldsymbol k\\ &\\ \end{aligned} Sf=Δ +k Δ = S f cosθPNPN (ϕ)fSf=(ϕ)fΔ+(Δϕ)fk

orthogonal correction approach

在这里插入图片描述
S f = Δ ⃗ + k ⃗ Δ ⃗ = ∣ S ⃗ f ∣ ⋅ P N ⃗ ∣ P N ∣ ( ∇ ϕ ) f ⋅ S f = ( ∇ ϕ ) f ⋅ Δ + ( Δ ϕ ) f ⋅ k \begin{aligned} & \boldsymbol S_f=\vec \Delta + \vec k \\ & \vec \Delta=\left| \vec S_f\right|\cdot \frac{\vec {PN}}{\left | PN\right |}\\ &(\nabla \phi)_f \cdot \boldsymbol S_f\\ &=(\nabla\phi)_f\cdot \Delta+(\Delta \phi)_f\cdot \boldsymbol k\\ &\\ \end{aligned} Sf=Δ +k Δ = S f PNPN (ϕ)fSf=(ϕ)fΔ+(Δϕ)fk

over-relaxed approach

在这里插入图片描述
S f = Δ ⃗ + k ⃗ Δ ⃗ = ∣ S ⃗ f ∣ c o s θ ⋅ P N ⃗ ∣ P N ∣ = P N ⃗ ∣ S f ∣ 2 S f ⋅ P N ⃗ ( ∇ ϕ ) f ⋅ S f = ( ∇ ϕ ) f ⋅ Δ + ( Δ ϕ ) f ⋅ k \begin{aligned} & \boldsymbol S_f=\vec \Delta + \vec k \\ & \vec \Delta=\frac{\left| \vec S_f\right|}{cos\theta}\cdot \frac{\vec {PN}}{\left | PN\right |}=\frac{ \vec{PN}\left |\boldsymbol S_f\right |^2}{\boldsymbol S_f \cdot \vec{PN}}\\ &(\nabla \phi)_f \cdot \boldsymbol S_f\\ &=(\nabla\phi)_f\cdot \Delta+(\Delta \phi)_f\cdot \boldsymbol k\\ &\\ \end{aligned} Sf=Δ +k Δ =cosθ S f PNPN =SfPN PN Sf2(ϕ)fSf=(ϕ)fΔ+(Δϕ)fk

Algebraic Equation for Non-orthogonal Meshes

∑ f ( D ∇ ϕ ) ⋅ S f = ∑ f ( ( D ∇ ϕ ) f ⋅ ( Δ + k ) ) = ∑ f ( D ∇ ϕ ) f ⋅ Δ + ∑ f ( D ∇ ϕ ) f ⋅ k = ∑ f ( D ϕ N − ϕ P P N ) ∣ Δ ∣ + ∑ f ( D ∇ ϕ ) ⋅ k \begin{aligned} & \sum_f (D\nabla \phi)\cdot\boldsymbol S_f=\sum _f((D\nabla \phi)_f\cdot (\Delta+\boldsymbol k))\\ & =\sum_f(D\nabla \phi)_f\cdot\Delta+\sum_f(D\nabla \phi)_f\cdot\boldsymbol k \\ & =\sum_f(D\frac{\phi_N-\phi_P}{PN})\left|\Delta\right|+\sum_f(D\nabla\phi)\cdot \boldsymbol k \end{aligned} f(Dϕ)Sf=f((Dϕ)f(Δ+k))=f(Dϕ)fΔ+f(Dϕ)fk=f(DPNϕNϕP)Δ+f(Dϕ)k
a N = D P N ∣ Δ ∣ f a P = ∑ f D P N ∣ Δ ∣ f b P = S P V P + ∑ f ( D ∇ ϕ ) ⋅ k a p ϕ p + ∑ f a N ϕ N = b P \begin{aligned} & a_N=\frac{D}{PN}\left|\Delta\right|_f\\ & a_P=\sum_f \frac{D}{PN}\left|\Delta\right|_f\\ & b_P=S_PV_P+\sum_f(D\nabla\phi)\cdot \boldsymbol k\\ & a_p\phi_p+\sum_f a_N\phi_N=b_P \end{aligned} aN=PNDΔfaP=fPNDΔfbP=SPVP+f(Dϕ)kapϕp+faNϕN=bP

Example 2


在这里插入图片描述
1.
ϕ = x 2 + y 2 + x 2 y 2 ∇ ϕ = ∂ ϕ ∂ x i + ∂ ϕ ∂ y j = ( 2 x + 2 x y 2 ) i + ( 2 y + 2 x 2 y ) j C ( 1.75 , 2 ) a n a l y t i c a l   v a l u e : ∇ ϕ C = ( 2 ∗ 1.75 + 2 ∗ 1.75 ∗ 2 2 ) i + ( 2 ∗ 2 + 2 ∗ 2 ∗ 1.7 5 2 ) j = 17.5 i + 16.25 j n u m e r i c a l   v a l u e : ∇ ϕ C = 1 V C ∑ f ϕ f S f = 1 8.625 [ 84.625 ( 2.5 i + j ) + 42.0625 ( − i + 2 j ) + 4.3125 ( − 2 i + 0.5 j ) + 1.5 ( − i + 2 j ) + 12.37890625 ( 1.5 i − 1.5 j ) ] = 20.63111 i + 17.31454 j \begin{aligned} & \phi=x^2+y^2+x^2y^2\\ & \nabla \phi=\frac{\partial \phi}{\partial x}\boldsymbol i+ \frac{\partial \phi}{\partial y}\boldsymbol j=(2x+2xy^2)\boldsymbol i+(2y+2x^2y)\boldsymbol j\\ & C(1.75,2)\\ & analytical\ value:\\ & \nabla \phi_C= (2*1.75+2*1.75*2^2)\boldsymbol i +(2*2+2*2*1.75^2)\boldsymbol j=17.5\boldsymbol i +16.25\boldsymbol j\\ & numerical \ value:\\ & \nabla\phi_C=\frac{1}{V_C}\sum_f\phi_f\boldsymbol S_f\\ & =\frac{1}{8.625}\left[ 84.625(2.5\boldsymbol i+\boldsymbol j)+ 42.0625(- \boldsymbol i+2\boldsymbol j)+ 4.3125(- 2\boldsymbol i+0.5\boldsymbol j)+ 1.5(- \boldsymbol i+2\boldsymbol j)+ 12.37890625(1.5\boldsymbol i-1.5\boldsymbol j) \right]\\ & =20.63111\boldsymbol i+17.31454\boldsymbol j\\ \end{aligned} ϕ=x2+y2+x2y2ϕ=xϕi+yϕj=(2x+2xy2)i+(2y+2x2y)jC(1.75,2)analytical value:ϕC=(21.75+21.7522)i+(22+221.752)j=17.5i+16.25jnumerical value:ϕC=VC1fϕfSf=8.6251[84.6252.5i+j+42.0625i+2j+4.31252i+0.5j+1.5i+2j+12.378906251.5i1.5j]=20.63111i+17.31454j

∇ ϕ F = 112.625 i + 133.4375 j \begin{aligned} & \nabla \phi_F=112.625\boldsymbol i+133.4375\boldsymbol j\\ \end{aligned} ϕF=112.625i+133.4375j

插值 ∇ ϕ f 1 \nabla \phi_{f1} ϕf1:
∇ ϕ f 1 = g f 1 ∇ ϕ F + ( 1 − g f 1 ) ∇ ϕ C \nabla \phi_{f1}=g_{f1}\nabla \phi_F+(1-g_{f1})\nabla \phi_C ϕf1=gf1ϕF+(1gf1)ϕC
∇ ϕ F = 112.625 i + 133.4375 j \nabla \phi_F=112.625\boldsymbol i+133.4375\boldsymbol j ϕF=112.625i+133.4375j
numerical value of the gradient at C:
∇ ϕ C = 20.63111 i + 17.31454 j \nabla \phi_C=20.63111\boldsymbol i+17.31454\boldsymbol j ϕC=20.63111i+17.31454j
g f 1 = d C f 1 d C f 1 + d f 1 F = 0.5 g_{f1}=\frac{d_{Cf1}}{d_{Cf1}+d_{f1F}}=0.5 gf1=dCf1+df1FdCf1=0.5
numerical value:
∇ ϕ f 1 = 66.628055 i + 75.37602 j \nabla \phi_{f1}=66.628055\boldsymbol i+75.37602\boldsymbol j ϕf1=66.628055i+75.37602j

analytical value:
f 1 ( 3 , 2.75 ) f_1(3,2.75) f1(3,2.75)
∇ ϕ f 1 = ( 2 x + 2 x y 2 ) i + ( 2 y + 2 y x 2 ) j \nabla \phi_{f1}=(2x+2xy^2)\boldsymbol i +(2y+2yx^2)\boldsymbol j ϕf1=(2x+2xy2)i+(2y+2yx2)j
∇ ϕ f 1 = 51.375 i + 55 j \nabla \phi_{f1}=51.375\boldsymbol i +55\boldsymbol j ϕf1=51.375i+55j

− ∇ ϕ f 1 ⋅ S f 1 = E f 1 ϕ C − ϕ F d C F − ∇ ϕ f 1 ⋅ T f 1 -\nabla \phi_{f1}\cdot\boldsymbol S_{f1}=E_{f1}\frac{\phi_C-\phi_F}{d_{CF}}-\nabla \phi_{f1}\cdot \boldsymbol T_{f1} ϕf1Sf1=Ef1dCFϕCϕFϕf1Tf1
S f 1 = 2.5 i + j \boldsymbol S_{f1}=2.5\boldsymbol i+\boldsymbol j Sf1=2.5i+j
e 1 = d C F d C F = 0.8575 i + 0.51445 j \boldsymbol e_1=\frac{\boldsymbol d_{CF}}{d_{CF}}=0.8575\boldsymbol i+0.51445\boldsymbol j e1=dCFdCF=0.8575i+0.51445j

(a) minimum correction approach
E f 1 = ( e 1 ⋅ S f 1 ) e 1 = 2.279 i + 1.368 j ⇒ E f 1 = 2.658 \boldsymbol E_{f1}=(\boldsymbol e_1\cdot\boldsymbol S_{f1})\boldsymbol e_1=2.279\boldsymbol i+1.368\boldsymbol j \Rightarrow \boldsymbol E_{f1}=2.658 Ef1=(e1Sf1)e1=2.279i+1.368jEf1=2.658
T f 1 = S f 1 − E f 1 = 0.221 i − 0.368 j ⇒ ∇ ϕ f 1 ⋅ T f 1 = ( 66.628055 i + 75.37602 j ) ⋅ ( 0.221 i − 0.368 j ) = − 13.014 \boldsymbol T_{f1}=\boldsymbol S_{f1}-\boldsymbol E_{f1}=0.221\boldsymbol i-0.368\boldsymbol j \Rightarrow \nabla \phi_{f1} \cdot \boldsymbol T_{f1}=(66.628055\boldsymbol i+75.37602\boldsymbol j)\cdot (0.221\boldsymbol i-0.368\boldsymbol j)=-13.014 Tf1=Sf1Ef1=0.221i0.368jϕf1Tf1=(66.628055i+75.37602j)(0.221i0.368j)=13.014
− ∇ ϕ f 1 ⋅ S f 1 = 2.658 2.9155 ( ϕ C − ϕ F ) + 13.014 = 0.912 ( ϕ C − ϕ F ) + 13.014 -\nabla \phi_{f1}\cdot\boldsymbol S_{f1}=\frac{2.658}{2.9155}(\phi_C-\phi_F)+13.014=0.912(\phi_C-\phi_F)+13.014 ϕf1Sf1=2.91552.658(ϕCϕF)+13.014=0.912(ϕCϕF)+13.014

(b) orthogonal correction approach
E f 1 = e 1 ⋅ S f 1 = 2.309 i + 1.385 j ⇒ E f 1 = 2.693 \boldsymbol E_{f1}=\boldsymbol e_1\cdot\boldsymbol S_{f1}=2.309\boldsymbol i+1.385\boldsymbol j \Rightarrow \boldsymbol E_{f1}=2.693 Ef1=e1Sf1=2.309i+1.385jEf1=2.693
T f 1 = S f 1 − E f 1 = 0.191 i − 0.385 j ⇒ ∇ ϕ f 1 ⋅ T f 1 = ( 66.628055 i + 75.37602 j ) ⋅ ( 0.191 i − 0.385 j ) = − 16.294 \boldsymbol T_{f1}=\boldsymbol S_{f1}-\boldsymbol E_{f1}=0.191\boldsymbol i-0.385\boldsymbol j \Rightarrow \nabla \phi_{f1} \cdot \boldsymbol T_{f1}=(66.628055\boldsymbol i+75.37602\boldsymbol j)\cdot (0.191\boldsymbol i-0.385\boldsymbol j)=-16.294 Tf1=Sf1Ef1=0.191i0.385jϕf1Tf1=(66.628055i+75.37602j)(0.191i0.385j)=16.294
− ∇ ϕ f 1 ⋅ S f 1 = 2.693 2.9155 ( ϕ C − ϕ F ) + 16.294 = 0.924 ( ϕ C − ϕ F ) + 16.294 -\nabla \phi_{f1}\cdot\boldsymbol S_{f1}=\frac{2.693}{2.9155}(\phi_C-\phi_F)+16.294=0.924(\phi_C-\phi_F)+16.294 ϕf1Sf1=2.91552.693(ϕCϕF)+16.294=0.924(ϕCϕF)+16.294

c) over-relaxed approach
E f 1 = S 1 ⋅ S 1 e 1 ⋅ S f 1 e 1 = 2.339 i + 1.403 j ⇒ E f 1 = 2.728 \boldsymbol E_{f1}=\frac{\boldsymbol S_1\cdot\boldsymbol S_1}{\boldsymbol e_1\cdot\boldsymbol S_{f1}}\boldsymbol e_1=2.339\boldsymbol i+1.403\boldsymbol j \Rightarrow \boldsymbol E_{f1}=2.728 Ef1=e1Sf1S1S1e1=2.339i+1.403jEf1=2.728
T f 1 = S f 1 − E f 1 = 0.161 i − 0.403 j ⇒ ∇ ϕ f 1 ⋅ T f 1 = ( 66.628055 i + 75.37602 j ) ⋅ ( 0.161 i − 0.403 j ) = − 19.649 \boldsymbol T_{f1}=\boldsymbol S_{f1}-\boldsymbol E_{f1}=0.161\boldsymbol i-0.403\boldsymbol j \Rightarrow \nabla \phi_{f1} \cdot \boldsymbol T_{f1}=(66.628055\boldsymbol i+75.37602\boldsymbol j)\cdot (0.161\boldsymbol i-0.403\boldsymbol j)=-19.649 Tf1=Sf1Ef1=0.161i0.403jϕf1Tf1=(66.628055i+75.37602j)(0.161i0.403j)=19.649
− ∇ ϕ f 1 ⋅ S f 1 = 2.728 2.9155 ( ϕ C − ϕ F ) + 16.294 = 0.936 ( ϕ C − ϕ F ) + 19.649 -\nabla \phi_{f1}\cdot\boldsymbol S_{f1}=\frac{2.728}{2.9155}(\phi_C-\phi_F)+16.294=0.936(\phi_C-\phi_F)+19.649 ϕf1Sf1=2.91552.728(ϕCϕF)+16.294=0.936(ϕCϕF)+19.649

bondary conditions for non-orthogonal grids

dirichlet boundary condition
neumann boundary condition
mixed boundary condition

skewness

在这里插入图片描述
ϕ f = ϕ f ′ + ( ∇ ϕ ) f ′ ⋅ d f ′ f \phi_f=\phi_{f'}+(\nabla \phi)_{f'}\cdot \boldsymbol d_{f'f} ϕf=ϕf+(ϕ)fdff

under relaxation

a C ϕ C + ∑ f a N ϕ N = b P a_C\phi_C+\sum_f a_N\phi_N=b_P aCϕC+faNϕN=bP
ϕ p = b P − ∑ f a N ϕ N a P \phi_p=\frac{b_P-\sum_f a_N\phi_N}{a_P} ϕp=aPbPfaNϕN
显式:
ϕ P = ϕ P o l d + α ( b p − ∑ f a N ϕ N a P − ϕ P o l d ) \phi_P=\phi_P^{old}+\alpha(\frac{b_p-\sum_f a_N\phi_N}{a_P}-\phi_P^{old}) ϕP=ϕPold+α(aPbpfaNϕNϕPold)
fields p 0.3
隐式:
a P α + ∑ f a N ϕ N = b P + ( 1 − α ) a p α ϕ p o l d \frac{a_P}{\alpha}+\sum_f a_N\phi_N=b_P+\frac{(1-\alpha)a_p}{\alpha}\phi_p^{old} αaP+faNϕN=bP+α(1α)apϕpold
equations U 0.9

[CFD] Relaxation in CFD (Part 1) - Explicit Relaxation, Under-Relaxation Factor
在这里插入图片描述

【补充内容】Fluid Mechanics 101- non-orthogonal corrector2

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值