【CFD理论】对流项-01

基本对流格式

练习:
Divergence scheme example
在这里插入图片描述
Divergence schemes

∇ ⋅ Q \nabla \cdot Q Q

  • 如果Q是矢量,等式可以写成:
    ∇ ⋅ Q = ∂ Q x ∂ x + ∂ Q y ∂ y + ∂ Q z ∂ z \nabla\cdot Q=\frac{\partial Q_x}{\partial x}+\frac{\partial Q_y}{\partial y}+\frac{\partial Q_z}{\partial z} Q=xQx+yQy+zQz
divSchemes
{
    default         none;
    div(Q)          Gauss <interpolation scheme>;
}
  • 对于对流项的典型使用,传输一个属性Q,在速度场的影响 ϕ \phi ϕ,特别的定义:
divSchemes
{
    default         none;
    div(phi,Q)      Gauss <interpolation scheme>;
}

ϕ \phi ϕ 这个关键词典型的用于代表通量(流)穿过cell面,例如

  • 体积通量: ϕ = u f ⋅ S f \phi=\boldsymbol u_f \cdot \boldsymbol S_f ϕ=ufSf
  • 质量通量: ϕ = ρ f ( u f ⋅ S f ) \phi=\rho_f(\boldsymbol u_f\cdot \boldsymbol S_f) ϕ=ρf(ufSf)
  1. Upwind divergence scheme
  • 一阶
  • 有界
  • 面心值是根据上游值来确定
    ϕ f = ϕ c \phi_f=\phi_c ϕf=ϕc
divSchemes
{
    default         none;
    div(phi,U)      Gauss upwind;
}
  1. Linear divergence scheme
  • 二阶
  • 无界
  • 对于LES计算是很好的选择,因为低耗散
    ϕ f = 0.5 ( ϕ c + ϕ d ) \phi_f=0.5(\phi_c+\phi_d) ϕf=0.5(ϕc+ϕd)
divSchemes
{
    default         none;
    div(phi,U)      Gauss linear;
}
  1. Linear-upwind divergence scheme
  • 迎风插值权重,用一个显式的修正基于local cell gradient
  • 二阶精度
  • 无界
divSchemes
{
    default         none;
    div(phi,U)      Gauss linearUpwind grad(U);
}
  1. MUSCL divergence scheme
  • 守恒定律的单调上游中心方案
  • 二阶
  • 无界
divSchemes
{
    default         none;
    div(phi,U)      Gauss MUSCL;
}
  1. Limited linear divergence scheme
  • 一/二阶
  • 无界
divSchemes
{
    default         none;
    div(phi,U)      Gauss limitedLinear <coeff>;
}

其他参考网址:

一维定常对流扩散方程

在这里插入图片描述

解析解

方程:
d ( ρ u ϕ ) d x = d x ( Γ d ϕ d x ) \frac{d(\rho u \phi)}{dx}=\frac{d}{x}(\Gamma \frac{d\phi}{dx}) dxd(ρuϕ)=xd(Γdxdϕ)

解析解:
ρ u ϕ − ( Γ d ϕ d x ) = c \rho u \phi - (\Gamma \frac{d\phi}{dx})=c ρuϕ(Γdxdϕ)=c
d ϕ d x = ρ u Γ ϕ − c Γ \frac{d\phi}{dx}=\frac{\rho u}{\Gamma}\phi-\frac{c}{\Gamma} dxdϕ=ΓρuϕΓc
w h e r e   ϕ = ρ u Γ ϕ − c Γ where \ \phi=\frac{\rho u}{\Gamma}\phi-\frac{c}{\Gamma} where ϕ=ΓρuϕΓc
d ϕ ϕ = ρ u Γ d x ⇒ ρ u Γ x + c 3 ⇒ ϕ = C λ e ρ u λ x + c ρ u \frac{d\phi}{\phi}=\frac{\rho u}{\Gamma}dx \Rightarrow \frac{\rho u}{\Gamma}x+c_3\Rightarrow\phi=\frac{C\lambda e^{\frac{\rho u}{\lambda}x}+c}{\rho u} ϕdϕ=ΓρudxΓρux+c3ϕ=ρuCλeλρux+c


ϕ − ϕ W ϕ E − ϕ W = e P e L x − x W L − 1 e P e L − 1 \frac{\phi-\phi_W}{\phi_E-\phi_W}=\frac{e^{Pe_L\frac{x-x_W}{L}}-1}{e^{Pe_L}-1} ϕEϕWϕϕW=ePeL1ePeLLxxW1

佩克莱数 Peclet number,简称Pe数:
P e L = ρ u L Γ ( 对流 / 扩散 ) , L = x E − x W Pe_L=\frac{\rho u L}{\Gamma}(对流/扩散),L=x_E-x_W PeL=ΓρuL(对流/扩散),L=xExW
在这里插入图片描述

  • P e L = 0 Pe_L=0 PeL=0时,是纯扩散型
  • 一般 P e L ≤ 2 Pe_L \leq 2 PeL2

数值解

三维 对流-扩散
∫ V P [ ∇ ⋅ ( ρ U ϕ ) − ∇ ⋅ ( Γ ∇ ϕ ) ] d V = 0 \int_{V_P}[\nabla \cdot (\rho \boldsymbol U\phi)-\nabla\cdot(\Gamma\nabla\phi)]dV=0 VP[(ρUϕ)(Γ∇ϕ)]dV=0
∫ V P [ ∇ ⋅ ( ρ U ϕ ) − ∇ ⋅ ( Γ ∇ ϕ ) ] d V = ∫ ∂ V P ( ρ U ϕ − Γ ∇ ϕ ) ⋅ d S = ∫ ∂ V P [ ρ U ϕ i − Γ d ϕ d x i ] ⋅ d S = 0 \int_{V_P}[\nabla \cdot (\rho \boldsymbol U\phi)-\nabla\cdot(\Gamma\nabla\phi)]dV=\int_{\partial V_P}(\rho \boldsymbol U\phi-\Gamma \nabla \phi)\cdot d\boldsymbol S=\int_{\partial V_P}[\rho \boldsymbol U\phi \boldsymbol i-\Gamma\frac{d\phi}{dx}\boldsymbol i]\cdot d\boldsymbol S=0 VP[(ρUϕ)(Γ∇ϕ)]dV=VP(ρUϕΓ∇ϕ)dS=VP[ρUϕiΓdxdϕi]dS=0

  • CD
  • upwind
  • second order upwind

Central Difference (CD) Scheme

中心差分格式
在这里插入图片描述

  • 公式:
    ϕ ( x ) = k 0 + k 1 ( x − x C ) \phi(x)=k_0+k_1(x-x_C) ϕ(x)=k0+k1(xxC)
  • e处的插值格式:
    ϕ e = ϕ C + ( ϕ E − ϕ C ) ( x E − x C ) ( x e − x C ) \phi_e=\phi_C+\frac{(\phi_E-\phi_C)}{(x_E-x_C)}(x_e-x_C) ϕe=ϕC+(xExC)(ϕEϕC)(xexC)
  • 均匀网格:
    ϕ e = ϕ C + ϕ E 2 \phi_e=\frac{\phi_C+\phi_E}{2} ϕe=2ϕC+ϕE

数值解
对流-扩散e处插值方程
( ρ u Δ y ) e − ( Γ d ϕ d x Δ y ) e = ( ρ u Δ y ) e ϕ C + ϕ E 2 − ( Γ Δ y δ x ) e ( ϕ E − ϕ C ) (\rho u \Delta y)_e-(\Gamma \frac{d \phi}{dx}\Delta y)_e=(\rho u \Delta y)_e\frac{\phi_C+\phi_E}{2}-(\Gamma \frac{\Delta y}{\delta x})_e(\phi_E-\phi_C) (ρuΔy)e(ΓdxdϕΔy)e=(ρuΔy)e2ϕC+ϕE(ΓδxΔy)e(ϕEϕC)
对流-扩散w处插值方程
− [ ( ρ u Δ y ) w − ( Γ d ϕ d x Δ y ) w ] = − [ ( ρ u Δ y ) w ϕ C + ϕ E 2 − ( Γ Δ y δ x ) w ( ϕ C − ϕ W ) ] -[(\rho u \Delta y)_w-(\Gamma \frac{d \phi}{dx}\Delta y)_w]=-[(\rho u \Delta y)_w\frac{\phi_C+\phi_E}{2}-(\Gamma \frac{\Delta y}{\delta x})_w(\phi_C-\phi_W)] [(ρuΔy)w(ΓdxdϕΔy)w]=[(ρuΔy)w2ϕC+ϕE(ΓδxΔy)w(ϕCϕW)]
∵ [ ( ρ u Δ y ) e − ( Γ d ϕ d x Δ y ) e ] − [ ( ρ u Δ y ) w − ( Γ d ϕ d x Δ y ) w ] = 0 \because [(\rho u \Delta y)_e-(\Gamma \frac{d \phi}{dx}\Delta y)_e]-[(\rho u \Delta y)_w-(\Gamma \frac{d \phi}{dx}\Delta y)_w]=0 [(ρuΔy)e(ΓdxdϕΔy)e][(ρuΔy)w(ΓdxdϕΔy)w]=0
∴ [ ( ρ u Δ y ) e − ( Γ d ϕ d x Δ y ) e ] = [ ( ρ u Δ y ) w − ( Γ d ϕ d x Δ y ) w ] ( ( ρ u Δ y ) e 2 + Γ e Δ y e δ x e ) + [ ( ( ρ u Δ y ) w 2 + Γ w Δ y w δ x w ) ] ϕ C + [ ( ρ u Δ y ) e 2 − Γ e Δ y e δ x e ] ϕ E + [ ( ρ u Δ y ) w 2 − Γ w Δ y w δ x w ] ϕ W = 0 ( ρ u Δ y ) e 2 − Γ e Δ y e δ x e > 0 ⇒ P e = ( ρ u ) e δ x e Γ e > 2 \therefore [(\rho u \Delta y)_e-(\Gamma \frac{d \phi}{dx}\Delta y)_e]=[(\rho u \Delta y)_w-(\Gamma \frac{d \phi}{dx}\Delta y)_w]\\ (\frac{(\rho u \Delta y)_e}{2}+\Gamma_e\frac{\Delta y_e}{\delta x_e})+[(\frac{(\rho u \Delta y)_w}{2}+\Gamma_w\frac{\Delta y_w}{\delta x_w})]\phi_C+[\frac{(\rho u \Delta y)_e}{2}-\Gamma_e\frac{\Delta y_e}{\delta x_e}]\phi_E+[\frac{(\rho u \Delta y)_w}{2}-\Gamma_w\frac{\Delta y_w}{\delta x_w}]\phi_W=0\\ \frac{(\rho u \Delta y)_e}{2}-\Gamma_e\frac{\Delta y_e}{\delta x_e}\gt0\\ \Rightarrow Pe=\frac{(\rho u)_e\delta x_e}{\Gamma_e}\gt2 [(ρuΔy)e(ΓdxdϕΔy)e]=[(ρuΔy)w(ΓdxdϕΔy)w](2(ρuΔy)e+ΓeδxeΔye)+[(2(ρuΔy)w+ΓwδxwΔyw)]ϕC+[2(ρuΔy)eΓeδxeΔye]ϕE+[2(ρuΔy)wΓwδxwΔyw]ϕW=02(ρuΔy)eΓeδxeΔye>0Pe=Γe(ρu)eδxe>2

  • 中心差分格式 → \rightarrow 容易振荡(发散)
  • 为了减少邻值误差放大,通过减小网格尺寸,一般设置为 P e ≤ 2 Pe \leq 2 Pe2

example 5.2

在这里插入图片描述
在这里插入图片描述

  • table 5.2是绝对对角占优
  • 纯扩散方程求解是对称矩阵,为什么对流-扩散方程不是对称矩阵?
  • a W = D + F 2 , a E = D − F 2 a_W=D+\frac{F}{2},a_E=D-\frac{F}{2} aW=D+2F,aE=D2F
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值