描述
给定字符串,求它的回文子序列个数。回文子序列反转字符顺序后仍然与原序列相同。例如字符串aba中,回文子序列为"a", "a", "aa", "b", "aba",共5个。内容相同位置不同的子序列算不同的子序列。
输入
第一行一个整数T,表示数据组数。之后是T组数据,每组数据为一行字符串。
输出
对于每组数据输出一行,格式为"Case #X: Y",X代表数据编号(从1开始),Y为答案。答案对100007取模。
数据范围
1 ≤ T ≤ 30
小数据
字符串长度 ≤ 25
大数据
字符串长度 ≤ 1000
样例输入
5
aba
abcbaddabcba
12111112351121
ccccccc
fdadfa
样例输出
Case #1: 5
Case #2: 277
Case #3: 1333
Case #4: 127
Case #5: 17
描述
给定字符串,求它的回文子序列个数。回文子序列反转字符顺序后仍然与原序列相同。例如字符串aba中,回文子序列为"a", "a", "aa", "b", "aba",共5个。内容相同位置不同的子序列算不同的子序列。
输入
第一行一个整数T,表示数据组数。之后是T组数据,每组数据为一行字符串。
输出
对于每组数据输出一行,格式为"Case #X: Y",X代表数据编号(从1开始),Y为答案。答案对100007取模。
数据范围
1 ≤ T ≤ 30
小数据
字符串长度 ≤ 25
大数据
字符串长度 ≤ 1000
5 aba abcbaddabcba 12111112351121 ccccccc fdadfa
Case #1: 5 Case #2: 277 Case #3: 1333 Case #4: 127 Case #5: 17
题解: DP。注意mod操作在减法操作中要加基数,防止余数为负!!!
#include<iostream>
#include<cstdio>
#include<cstring>
#define mod_base 100007
using namespace std;
int dp[1001][1001];
int main() {
int t;
scanf("%d",&t);
getchar();
for(int cnt=1;cnt<=t;cnt++) {
char s[1001];
memset(dp,0,sizeof(dp));
gets(s);
int len=strlen(s);
for(int i=0;i<len;i++) {
dp[i][i]=1;
if(i<len-1) {
dp[i][i+1]=2;
if(s[i]==s[i+1]) dp[i][i+1]+=1;
}
}
for(int k=3;k<=len;k++) {
for(int i=0;i+k-1<len;i++) {
int j=i+k-1;
dp[i][i+k-1]=(dp[i][i+k-2]+dp[i+1][i+k-1]-dp[i+1][i+k-2]+100007)%100007; //减法中要加mod_base,防止余数为负!
if(s[i]==s[i+k-1]) dp[i][i+k-1]=(dp[i][i+k-2]+dp[i+1][i+k-1]+1)%100007;
}
}
printf("Case #%d: %d\n",cnt,dp[0][len-1]);
}
return 0;
}