计算机专业中怎么样绘制神经网络结构图

第一个ConvNetDraw: 两颗星**
https://cbovar.github.io/ConvNetDraw/
在这里插入图片描述
在线的,不过只能绘制这种简单的图,可以增加卷积层,池化啥的,左边可以选择调节角度,

第二个CNN Convoluter:两颗星**
https://pwwang.github.io/cnn-convoluter/
在这里插入图片描述
也是一个在线的网址,左边选择hide data 也就是不隐藏数据,在input中输入padding的大小,右边图中就会显示出来,在设置卷积核的尺寸 就可以动态的看到output的过程。缺点是只能是这种固定的平面的卷积操作。

第三个Netron 三颗星***
https://lutzroeder.github.io/netron/
在线的网址,
https://github.com/lutzroeder/netron
也可以在github上下载对应的版本,不过建议网页版就可以查看网络的模型结构图,点击open model 然后在自己的项目中寻找以H5结尾的文件,就可以选择打开了,效果如下:
在这里插入图片描述
在这里插入图片描述
只不过这种输出太长,可以调整方向横着看,Netron是一个神经网络可视化包,支持绝大多数神经网络操作。该功能包可以为不同节点显示不同的颜色,卷积层用蓝色显示,池化层和归一化层用绿色显示,数学操作用黑色显示。

第四个NN-SVG: 五颗星*****
https://github.com/alexlenail/NN-SVG
NN-SVG是由来麻省理工学院弗兰克尔生物工程实验室开发的。可以绘制的图包括以节点形式展示的FCNN style,这个特别适合传统的全连接神经网络的绘制。

以平铺网络结构展示的LeNet style,用二维的方式,适合查看每一层featuremap的大小和通道数目。

以三维block形式展现的AlexNet style,可以更加真实地展示卷积过程中高维数据的尺度的变化,目前只支持卷积层和全连接层。

这个工具的优势是操作方便,通过交互式界面直接控制各层增减及变化,支持三种风格,选择空间大,支持SVG格式下载。缺陷是定制化程度低,各连接层不是很好看。

目前支持这三种方式:
在这里插入图片描述
在这里插入图片描述
可调节连接边的透明度、粗细、正负样本的颜色表示,节点的颜色和大小,是否显示偏置、标签等,输入节点、隐藏节点和输出节点的个数。
在这里插入图片描述
用于mnist手写字体识别的经典模型,算是CNN鼻祖模型,除了展示的颜色、线条粗细等属性,还可以设置网络结构每一层的通道、特征宽度高度、卷积核大小。
在这里插入图片描述
2012年Imagenet冠军模型,掀起深度学习热潮的结构。

第五个是PlotNeuralNet

Github地址:https://github.com/HarisIqbal88/PlotNeuralNet
PlotNeuralNet是由萨尔大学计算机科学专业的一个学生开发的。目前主要支持的是卷积神经网络,其中卷积层、池化层、bottleneck、skip-connection、up-conv、Softmax等常规的层在代码中都有定义,但是缺少RNN相关的可视化层展示。

代码用Python编写,需要调用LaTex输出PDF格式文档。需要说明的是,该软件在Windows下运行会有很多报错,在Ubuntu系统下则运行正常。接下来我们先看看示例效果。
PlotNeuralNet的使用方法非常简单,将项目克隆下来之后,想用什么结构,就从PlotNeural里找对应的模块,然后将它们拼接起来就好了。
在这里插入图片描述
这个有点复杂啊,代码的 不懂。。
上面的绘图,属于娱乐,真要手绘制自己的神经网络架构图还是要自己画图了,
最后就是万能的ppt画图了,还没学 ,下回补充。

<think>好的,用户想要查找BP神经网络结构图示例图解。首先,我需要确认用户的需求是了解BP神经网络的结构,可能需要包括输入层、隐藏层和输出层的图示,以及各层之间的连接和反馈机制。接下来,我应该回忆BP神经网络的基本结构,确保结构图的准确性。 根据已有的知识,BP神经网络通常是多层前馈网络,包括输入层、至少一个隐藏层和输出层。信号向前传播,误差反向传播。需要确认是否有标准的结构图示例,或者是否需要自己描述结构。 用户提供的引用中有关于BP神经网络的推导和实验的内容[^4],可能相关的信息,但没有直接提到结构图。可能需要根据这些引用中的描述来构造结构图。 接下来,需要考虑如何用文字清晰描述结构图,可能包括各层节点数、连接权重、激活函数的位置等。同时,要确保使用正确的LaTeX格式,如行内公式用$...$,独立公式用$$...$$,并正确分段。 可能需要分步骤描述结构图:输入层、隐藏层、输出层,以及反向传播的过程。此外,用户可能需要了解各层的作用,如输入层接收数据,隐藏层处理特征,输出层产生结果,以及如何通过误差反向调整权重。 另外,用户可能需要知道BP神经网络的典型应用,如分类、回归等,但当前问题主要集中在结构图。需要确保回答中引用相关文献,如引用[4]中提到的Softmax函数在输出层的应用,可以指出这一点。 最后,生成的相关问题需要围绕结构图展开,如层数选择、激活函数的作用、训练步骤和应用场景等。确保问题有助于用户进一步理解BP神经网络的结构和功能。 总结步骤: 1. 描述BP神经网络的基本结构,包括各层及其作用。 2. 提供结构图的文字示例,可能用节点和箭头表示连接。 3. 解释前向传播和反向传播过程。 4. 引用相关文献支持描述,如激活函数的使用。 5. 生成相关问题,帮助用户深入理解结构图和相关概念。</think>### BP神经网络结构图说明 BP神经网络通常由输入层、隐藏层(可多层)和输出层构成,结构示例如下: ``` 输入层 隐藏层 输出层 O ---------- O ----------- O | \ / | \ / | | \ / | \ / | O ---\--/--- O --\-----/---O | \/ | \ / | | /\ | \ / | O ---/--\--- O -----X------O | / \ | \ | | / \ | \| O ---------- O ----------- O ``` **各层功能说明:** 1. **输入层**:接收外部数据,节点数=输入特征维度。例如识别手写数字时,若图像为$28×28$像素,则输入层有784个节点[^4]。 2. **隐藏层**:进行非线性变换,节点数可调。常用Sigmoid、ReLU等激活函数,如: $$ \sigma(z) = \frac{1}{1+e^{-z}} $$ 3. **输出层**:生成最终结果,节点数=分类类别数(分类任务)或1个节点(回归任务)。若使用Softmax函数,输出会转换为概率分布[^4]。 **前向传播过程**: 输入数据逐层计算,第$l$层第$j$个节点的输出为: $$ a_j^{(l)} = \sigma\left( \sum_{i} w_{ji}^{(l)} a_i^{(l-1)} + b_j^{(l)} \right) $$ 其中$w_{ji}$为权重,$b_j$为偏置。 **反向传播过程**: 通过计算损失函数$L$对权重的梯度$\frac{\partial L}{\partial w_{ji}}$,从输出层到输入层逐层调整参数[^4]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zqx951102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值