大家伙在学习深度学习的卷积网络里有一个填充的问题是难免遇到的 所以np给了pad()这个函数来实现填充 但是多维度(大多数情况下是三维的)的pad函数却很难理解 博主就稍微写一点自己的理解 试图帮助大家理解 不喜勿喷 谢谢!
对一维数组的填充:
import numpy as np
arr1D = np.array([1, 1, 2, 2, 3, 4])
'''不同的填充方法'''
print 'constant: ' + str(np.pad(arr1D, (2, 3), 'constant'))
print 'edge: ' + str(np.pad(arr1D, (2, 3), 'edge'))
print 'linear_ramp: ' + str(np.pad(arr1D, (2, 3), 'linear_ramp'))
print 'maximum: ' + str(np.pad(arr1D, (2, 3), 'maximum'))
print 'mean: ' + str(np.pad(arr1D, (2, 3), 'mean'))
print 'median: ' + str(np.pad(arr1D, (2, 3), 'median'))
print 'minimum: ' + str(np.pad(arr1D, (2, 3), 'minimum'))
print 'reflect: ' + str(np.pad(arr1D, (2, 3), 'reflect'))
print 'symmetric: ' + str(np.pad(arr1D, (2, 3), 'symmetric'))
print 'wrap: ' + str(np.pad(arr1D, (2, 3), 'wrap'))
运行结果:
constant连续一样的值填充,有关于其填充值的参数。constant_values=(x, y)时前面用x填充,后面用y填充。缺参数是为0000。。。
edge用边缘值填充
linear_ramp边缘递减的填充方式
maximum, mean, median, minimum分别用最大值、均值、中位数和最小值填充
reflect, symmetric都是对称填充。前一个是关于边缘对称,后一个是关于边缘外的空气对称╮(╯▽╰)╭
wrap用原数组后面的值填充前面,前面的值填充后面
也可以有其他自定义的填充方法
对多维数组填充:
import numpy as np
arr3D = np.array([[[1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2],[1, 1, 2, 2]],
[[5, 1, 2, 6], [5, 1, 2, 6], [5, 1, 2, 6], [5, 1, 2, 6]],
[[1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2]]])
立体的展示就是这样:
print(np.pad(arr3D,((0,0),(0,1),(0,1))))
[[[1 1 2 2 0]
[1 1 2 2 0]
[1 1 2 2 0]
[1 1 2 2 0]
[0 0 0 0 0]]
[[5 1 2 6 0]
[5 1 2 6 0]
[5 1 2 6 0]
[5 1 2 6 0]
[0 0 0 0 0]]
[[1 1 2 2 0]
[1 1 2 2 0]
[1 1 2 2 0]
[1 1 2 2 0]
[0 0 0 0 0]]]
前后 上下 左右
也就是下边,右边各加一行0填充
边缘填充