数据结构与算法面试题(2022版本)

本文详细介绍了红黑树、AVL树、B树和B+树的概念、特点与应用场景,强调了它们在平衡二叉搜索树中的重要性。此外,还探讨了快排的优化、Top K问题的解决方案以及Bitmap在大数据处理中的应用,揭示了数据结构在面试和实际工作中的关键作用。
摘要由CSDN通过智能技术生成

(1) 红黑树的了解(平衡树,二叉搜索树),使用场景

把数据结构上几种树集中的讨论一下:

1. AVLtree

定义:先发明的自平衡二叉查找树。在AVL树中任何节点的两个子树的高度 大差别为一,所以它也被称为高度平衡树。查找、插入和删除在平均和坏情况 下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这 个树。 

节点的平衡因子是它的左子树的高度减去它的右子树的高度(有时相反)。带有 平衡因子1、0或 -1的节点被认为是平衡的。带有平衡因子 -2或2的节点被认为 是不平衡的,并需要重新平衡这个树。平衡因子可以直接存储在每个节点中,或 从可能存储在节点中的子树高度计算出来。

一般我们所看见的都是排序平衡二叉树。 

AVLtree使用场景:AVL树适合用于插入删除次数比较少,但查找多的情况。插 入删除导致很多的旋转,旋转是非常耗时的。AVL 在linux内核的vm area中使用。 

2. 二叉搜索树

二叉搜索树也是一种树,适用与一般二叉树的全部操作,但二叉搜索树能够实现 数据的快速查找。

二叉搜索树满足的条件: 

  1. 非空左子树的所有键值小于其根节点的键值 

  2. 非空右子树的所有键值大于其根节点的键值 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山竹之七语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值