高大动Chap2—大气运动的整体性质

高大动笔记:Chap2—大气运动的整体性质

根据《高等大气动力学》课程笔记总结,供需要的同学参考,有缺漏或错误的请联系我改正,谢谢!

超链接有系列文章的链接,每一个对应一章


目录

高大动笔记:Chap2—大气运动的整体性质

一、质量守恒定律

二、角动量守恒定律

1.一般质点组的角动量守恒定律

2.大气中的角动量守恒定律

大气状态定常

大气状态非定常

3.带状环流的角动量原理

三、能量守恒

参考文献

参考的教材

前置知识教材


一、质量守恒定律

如果不考虑污染物质及其他源和汇,大气总质量守恒

静力平衡\frac{\partial p}{\partial z}=-\rho g

\int_{p_{s}}^{0}\frac{\partial p}{\partial z} =-\int_{p_{s}}^{0}\rho g \Rightarrow -\int_{0}^{p_{s}}{\mathrm{d}}p=-\rho g\int_{0}^{H}{\mathrm{d}}z 

可以推出p_{s}=\rho gH

\begin{aligned} M_{total}&=\iint\limits_{S}{}\int_{0}^{\infty}\rho a^2\sin\theta {\mathrm{d}}\theta{\mathrm{d}}\lambda{\mathrm{d}}z\\ &=\iint\limits_{S}{}\left[\rho {\mathrm{d}}z\right]\mid_{0}^{\infty} a^2\sin\theta{\mathrm{d}}\theta{\mathrm{d}}\lambda\\ &=g^{-1}\iint\limits_{S}P_{s}(\theta,\lambda,t) a^2\sin\theta{\mathrm{d}}\theta{\mathrm{d}}\lambda=Const \end{aligned}


二、角动量守恒定律

1.一般质点组的角动量守恒定律

\boldsymbol{M}=\boldsymbol{r}\times m\boldsymbol{v} \quad \boldsymbol{M}\cdot\boldsymbol{l}=M_{c}

\begin{aligned} \frac{\mathrm{d}\boldsymbol{M}}{\mathrm{d}t} =\frac{\mathrm{d}}{\mathrm{d}t}[\boldsymbol{r}\times m\boldsymbol{v}] &=\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}\times m\boldsymbol{v} +\boldsymbol{r}\times m\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t}\\ &=\boldsymbol{r}\times m\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} =\boldsymbol{r}\times \boldsymbol{F} \end{aligned}

对于质点组:

\boldsymbol{M}=\sum_{i}^{} \boldsymbol M_{i}=\sum_{i}^{} \boldsymbol r_{i}\times m\boldsymbol v_{i}

因此有外力矩

\frac{\mathrm{d}\boldsymbol{M}}{\mathrm{d}t} =\sum_{i}^{} \boldsymbol r_{i}\times \boldsymbol F_{i}

如果外力矩为零,则质点组角动量守恒

2.大气中的角动量守恒定律

(1)地球+大气\Rightarrow孤立系统

(2)忽略地球自转,可以原点在地心,不随地球的

(3)大气自身的粘性,大气与地球之间的摩擦力都是内力

(4)重力是有心力

因此地球和大气所构成孤立系统的总角动量守恒

\boldsymbol{M}_{earth+atm}=const

大气状态定常

因为地球角动量不变,\boldsymbol{M}_{earth}=const,而大气随地球一起自转的那部分角动量\boldsymbol{M}_{0}也不变,因此相对于地球而运动的这部分大气的角动量

\boldsymbol{M'}=\boldsymbol{M}_{earth+atm}-\boldsymbol{M}_{earth}-\boldsymbol{M}_{0}=const

定常状态下\boldsymbol{M'}=0

大气状态非定常

假设

自由大气、无摩擦、无地形(气压梯度力指向地心)、采用惯性坐标系\Rightarrow无科氏力

这样,大气自身称为孤立体绝对角动量守恒

3.带状环流的角动量原理

在薄层近似下,r=a

大气相对于地轴的绝对角动量

\boldsymbol{M}_{a}=\boldsymbol{M}_{r}+\boldsymbol{M}_{i}

其中M_a为绝对角动量,M_r为相对角动量,M_i为牵连角动量

因此有

\begin{aligned} \boldsymbol{M}_{r}&=a\sin\theta\cdot v_{\lambda}\\ \boldsymbol{M}_{i}&=a\sin\theta \varOmega\cdot a\sin\theta =a^2\varOmega\sin^2\theta \\ \boldsymbol{M}_{a}&=\boldsymbol{M}_{r}+\boldsymbol{M}_{i}=(v_{\lambda}+\varOmega a\sin\theta)\varOmega\sin\theta \end{aligned}

\sigma坐标系下的运动方程

\left\{\begin{array} {lr} \frac{\partial v_{\lambda}}{\partial t} +\frac{v_{\theta}}{a}\frac{\partial v_{\lambda}}{\partial\theta} +\frac{v_{\lambda}}{a\sin\theta} \frac{\partial v_{\lambda}}{\partial\lambda} +\dot{\sigma}\frac{\partial v_{\lambda}}{\partial\sigma} +\frac{v_{\lambda}v_{\theta}}{a}\cot\theta =-\frac{1}{a\sin\theta}\left[\frac{\partial\phi}{\partial\lambda}+ RT\frac{\partial \ln_{}{p_{s}}}{\partial\lambda}\right]-2\varOmega\cos\theta v_{\theta} \\ \frac{\partial p_{s}}{\partial t} +\frac{1}{a\sin\theta}\left[\frac{\partial(p_{s}v_{\theta}\sin\theta)}{\partial\theta}+\frac{\partial(p_{s}v_{\lambda})}{\partial\lambda}\right]+\frac{\partial}{\partial\sigma}(p_{s}\dot{\sigma})=0 \end{array}\right.

上面方程中,上式\times p_{s}+下式\times v_{\lambda}

\begin{aligned} &\Rightarrow\frac{\partial (p_{s}v_{\lambda})}{\partial t} +\frac{1}{a\sin\theta} \left[\frac{\partial}{\partial\theta}(p_{s}v_{\theta}v_{\lambda}\sin\theta) +\frac{\partial}{\partial\lambda}(p_{s}v_{\lambda}^2)\right] +\frac{\partial}{\partial\sigma}(p_{s}\dot{\sigma}v_{\lambda}) +p_{s}\frac{v_{\theta}v_{\lambda}}{a}\cot\theta \\ &=-\left[\frac{p_{s}}{a\sin\theta}\frac{\partial\phi}{\partial\lambda} +\frac{RT}{a\sin\theta}\frac{\partial p_{s}}{\partial\lambda}\right] -2\varOmega\cos\theta v_{\theta}p_{s} \end{aligned}

对该式子进行积分

\begin{aligned} &g^{-1}\int_{0}^{2\pi}\mathrm{d}\lambda\int_{\theta_{1}}^{\theta_{2}}\mathrm{d}\theta\int_{0}^{1}\frac{\partial}{\partial t}(p_{s}v_{\lambda}a\sin\theta)a^2\sin\theta\mathrm{d}\sigma\\ =&-g^{-1}\iiint \left[\frac{\partial}{\partial \theta}(p_{s}v_{\lambda }v_{\theta } \sin\theta )+\frac{\partial}{\partial \lambda}(p_{s}v_{\lambda }^2 ) +a\sin\theta\frac{\partial}{\partial \sigma}(p_{s}\dot\sigma v_{\lambda})\right.\\ &\left.+\frac{p_{s}v_{\lambda }v_{\theta }}{a} \cot\theta\cdot a\sin\theta\right] a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma\quad {\color{blue}\left \langle 1 \right \rangle}\\ &-g^{-1}\iiint \left[p_{s}\frac{\partial \phi}{\partial \lambda}+ RT\frac{\partial p_{s}}{\partial \lambda}\right] a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma\quad {\color{blue}\left \langle 2 \right \rangle}\\ &-g^{-1}\iiint p_{s}(2\varOmega\cos\theta v_{\theta}\cdot a\sin\theta) a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma\quad {\color{blue}\left \langle 3 \right \rangle} \end{aligned}

将积分式子右边分为\left \langle 1 \right \rangle\left \langle 2 \right \rangle\left \langle3 \right \rangle三个部分

先看\left \langle 1 \right \rangle部分,由于

\begin{aligned} &\iiint\frac{\partial}{\partial \lambda}(p_{s}v_{\lambda }^2 )a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma\\ =&\iint\left(p_{s}v_{\lambda }^2\mid_{\lambda=2\pi}-p_{s}v_{\lambda }^2\mid_{\lambda=0}\right)a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta=0 \end{aligned}

又根据Chap1给出的运动学边界条件,地表和大气层顶垂直速度为0

\begin{aligned} &\iiint a\sin\theta\frac{\partial}{\partial \sigma}(p_{s}\dot\sigma v_{\lambda})a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma\\ =&\iint \left(p_{s}\dot\sigma v_{\lambda}\mid_{\sigma=1}-p_{s}\dot\sigma v_{\lambda}\mid_{\sigma=0}\right)a\sin\theta a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma=0 \end{aligned}

于是有

\begin{aligned} \left \langle 1 \right \rangle &=-g^{-1}\iiint \left[\frac{\partial}{\partial \theta}(p_{s}v_{\lambda }v_{\theta } \sin\theta )+p_{s}v_{\lambda }v_{\theta }\cos\theta\right] a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma\\ &=-g^{-1}\iiint \left[\frac{\partial}{\partial \theta}(p_{s}v_{\lambda }v_{\theta } \sin\theta )+p_{s}v_{\lambda }v_{\theta } {\color{red}\frac{\partial}{\partial \theta}(\sin\theta)}\right] a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma\\ &=-g^{-1}\iiint\frac{\partial}{\partial \theta} \left(p_{s}v_{\lambda }v_{\theta } \sin\theta a^2\sin\theta\right) \mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma\\ &=-g^{-1}\int_{0}^{2\pi} \int_{0}^{1} p_{s}v_{\lambda }v_{\theta } \sin\theta a^2\sin\theta\mid_{\theta=1}^{\theta=2}\mathrm{d}\lambda\mathrm{d}\sigma \end{aligned}

再看\left \langle 2 \right \rangle部分,由于Chap1中的静力学方程:RT=-\sigma\frac{\partial \phi}{\partial \sigma}

-p_{s}\frac{\partial \phi}{\partial \lambda}- RT\frac{\partial p_{s}}{\partial \lambda} =\sigma\frac{\partial \phi}{\partial \sigma}\frac{\partial p_{s}}{\partial \lambda}-\left[\frac{\partial }{\partial \lambda}\left(p_{s}\phi\right)-\phi\frac{\partial p_{s}}{\partial \lambda}\right]

在带状环流积分中\partial \lambda全微分积分为0,因此

-p_{s}\frac{\partial \phi}{\partial \lambda}- RT\frac{\partial p_{s}}{\partial \lambda} =\sigma\frac{\partial \phi}{\partial \sigma}\frac{\partial p_{s}}{\partial \lambda}+\phi\frac{\partial p_{s}}{\partial \lambda} =\frac{\partial p_{s}}{\partial \lambda}\left(\phi+\sigma\frac{\partial \phi}{\partial \sigma}\right)

于是有

\begin{aligned} \left \langle 2 \right \rangle &=g^{-1}\iiint \left[\phi+\sigma\frac{\partial \phi}{\partial \sigma}\right]\frac{\partial p_{s}}{\partial \lambda} a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma\\ &=g^{-1}\iiint \frac{\partial}{\partial \sigma}\left(\sigma\phi\right)\frac{\partial p_{s}}{\partial \lambda} a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \mathrm{d}\sigma\\ &=g^{-1}\iint\left(\sigma\phi\right)\mid_{\sigma=0}^{\sigma=1}\frac{\partial p_{s}}{\partial \lambda}a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta\\ &=g^{-1}\iint \phi_{s}\frac{\partial p_{s}}{\partial \lambda}a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta\\ &=g^{-1}\iint \left[\frac{\partial (\phi_{s}p_{s})}{\partial \lambda}-p_{s}\frac{\partial \phi_{s}}{\partial \lambda}\right] a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta\\ &=-g^{-1}\iint p_{s} \frac{1}{a\sin\theta} \frac{\partial (g_{s}z_{s})}{\partial \lambda}a\sin\theta \cdot a^2\sin\theta\mathrm{d}\lambda \mathrm{d}\theta \end{aligned}

再看\left \langle 3 \right \rangle部分,由于2\sin\theta\cos\theta=\frac{\mathrm{d}}{\mathrm{d}\theta}(\sin^2\theta)

于是有

\begin{aligned} \left \langle 3 \right \rangle&=-g^{-1}\iiint p_{s}(2\varOmega\cos\theta v_{\theta}\cdot a\sin\theta) a^2\sin\theta\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma\\ &=-g^{-1}\iiint p_{s}v_{\theta}a\sin\theta\frac{\partial}{\partial\theta}(\varOmega a^2\sin^2\theta)\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma\\ &=-g^{-1}\iiint\left\{\frac{\partial}{\partial\theta}\left[(p_{s}v_{\theta}a\sin\theta)(\varOmega a^2\sin^2\theta)\right]\right.\\ &\left.-(\varOmega a^2\sin^2\theta)\frac{\partial}{\partial\theta}(p_{s}v_{\theta}a\sin\theta)\right\}\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma\\ &=-g^{-1}\iint p_{s}v_{\theta}(\varOmega a^2\sin^2\theta)a\sin\theta\mid_{\theta_{1}}^{\theta_{2}}\mathrm{d}\lambda \mathrm{d}\sigma \quad{\color{blue}\left \langle 3.A \right \rangle}\\ &+g^{-1}\iiint \varOmega a^2\sin^2\theta\frac{\partial}{\partial\theta}(p_{s}v_{\theta}a\sin\theta)\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma \quad{\color{blue}\left \langle 3.B \right \rangle}\\ \end{aligned}

\left \langle 3.A \right \rangle部分已经计算出,现在看\left \langle 3.B \right \rangle部分,因为有p_{s}的全导数

\frac{\partial p_{s}}{\partial t}+\frac{\partial (p_{s}\dot\sigma)}{\partial \sigma}+\frac{1}{a\sin\theta}\left[\frac{\partial (p_{s}v_{\theta}\sin\theta)}{\partial \theta}+\frac{\partial}{\partial \lambda}(p_{s}v_{\lambda})\right]=0

所以计算\left \langle 3.B \right \rangle部分

\begin{aligned} \left \langle 3.B \right \rangle&=g^{-1}\iiint \varOmega a^2\sin^2\theta\frac{\partial}{\partial\theta}(p_{s}v_{\theta}a\sin\theta)\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma\\ &=-g^{-1}\iiint \varOmega a^3\sin^2\theta \left[a\sin\theta\left(\frac{\partial p_{s}}{\partial t}+\frac{\partial (p_{s}\dot\sigma)}{\partial \sigma}+\frac{\partial (p_{s}v_{\lambda})}{\partial \lambda}\right)\right] \mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma \end{aligned}

后两项\frac{\partial}{\partial \sigma}\frac{\partial}{\partial \lambda}在带状环流积分中为0,因此

\begin{aligned} \left \langle 3.B \right \rangle&=-g^{-1}\iiint \frac{\partial p_{s}}{\partial t} \varOmega a^3\sin^2\theta a\sin\theta \mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma\\ &=-\frac{\partial}{\partial t}\left[g^{-1}\iiint p_{s} \varOmega a^3\sin^2\theta a\sin\theta \mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma\right] \end{aligned}

由于绝对、相对和牵连角动量的关系,积分之即有

g^{-1}\iiint p_{s} (v_{\lambda}a\sin\theta+\varOmega a^2\sin^2\theta) a^2\sin\theta \mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma=const

若全球范围(则\left \langle 1 \right \rangle =0\left \langle 3.A \right \rangle =0)且无地形起伏(\left \langle 2 \right \rangle =0)

最后可以得到结论:全球范围,无地形起伏,则大气绝对角动量守恒


三、能量守恒

动能

E_{k}=g^{-1}\iiint p_{s}\frac{v_{\theta}^2+v_{\lambda}^2}{2}a^2\sin\theta\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma

位能(势能)

E_{\phi}=g^{-1}\iiint p_{s}\phi a^2\sin\theta\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma

内能

E_{T}=g^{-1}\iiint p_{s}C_{v}Ta^2\sin\theta\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma

在此基础上,定义焓

E_{e}=g^{-1}\iiint p_{s}C_{p}Ta^2\sin\theta\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma

根据静力平衡方程

\begin{aligned} RT&=-\sigma\frac{\partial \phi}{\partial \sigma}=-\left[\frac{\partial(\sigma\phi)}{\partial \sigma}-\phi\right]\\ \phi&=RT+\frac{\partial(\sigma\phi)}{\partial \sigma} \end{aligned}

因此位能

\begin{aligned} E_{\phi}&=g^{-1}\iiint p_{s}\phi a^2\sin\theta\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma\\ &=g^{-1}\iiint p_{s}\left[RT+\frac{\partial(\sigma\phi)}{\partial \sigma}\right] a^2\sin\theta\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma\\ &=g^{-1}\iiint p_{s}RT a^2\sin\theta\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma +g^{-1}\iiint p_{s}\frac{\partial(\sigma\phi)}{\partial \sigma} a^2\sin\theta\mathrm{d}\theta \mathrm{d}\lambda \mathrm{d}\sigma\\ &=E_{r}+E_{s} \end{aligned}

其中E_r是相对位势,E_s是表面位势。

根据C_{v}+R=C_{p},可得

E_{T}+E_{\phi}=E_{e}+E_{s}

因此在自由大气绝热系统中,能量一定守恒

下面我们推导\sigma坐标下总能量方程

(1)引入三维矢量

\boldsymbol{W}=p_{s}v_{\lambda}\boldsymbol{\lambda}+p_{s}v_{\theta}\boldsymbol{\theta}+p_{s}\dot\sigma\boldsymbol{k}

连续方程

\frac{\partial p_{s}}{\partial t}+\nabla\cdot\boldsymbol{W}=0

注意到

\boldsymbol{W}\cdot\nabla F=\nabla\cdot(F\boldsymbol{W})-F\nabla\cdot\boldsymbol{W}

(2)再利用运动方程及连续方程,导出总能的变率
(3)由热力学方程可以推出焓的时间变率
(4)最终可以推出总能量守恒:

E_{k}+E_{T}+E_{\phi}=E_{k}^{0}+E_{T}^{0}+E_{\phi}^{0}

\diamond这部分内容详情见《数值天气预报的数学物理基础》P53—56,第三章第5节“能量方程”部分的内容

不管是内能还是位能(合称总位能),最后都需要转化为大气运动的动能。有效位能是指该大气的总位能与将其绝热调整到稳定层结正压状态下的总位能之差,这是绝热过程可能释放的最大位能,叫做有效位能。而其中,有效位能并不能完全转化为大气运动的动能。

一般地,实际大气中平均有效位能只占平均位能的二百分之一。平均动能是平均有效位能的十分之一。所以,大气中的位能只有很少很少一部分可以转变为大气的动能,驱动大气的运动。因此,大气一般说来是一部效率很低的热机。

大气运动可以分为:

  1. 无旋有辐散运动
  2. 有旋无辐散运动

研究中经常取水平无辐散作为大气运动的很好的近似(即舍去大气的辐合辐散运动),这是因为大气运动主要体现在于其涡旋性


参考文献

主要内容来自任保华教授所授课的《高等大气动力学》。

参考的教材

【1】《数值天气预报的数学物理基础》. 第一卷/曾庆存著. —北京:科学出版社,2019.4

【2】《大气动力学原理》.(日)小仓义光著;黄荣辉,译. —北京:科学出版社,1981

《数值天气预报的数学物理基础》有很多偏数学原理的推导过程,为了使得对高大动有更加简洁的理解和清晰的框架,可能会省去一些推导过程,而着重强调其物理情形和理解。对于这一部分有更加深刻学习要求的同学可以研读原著

前置知识教材

主要包括动力气象学的相关内容(后续作者也会更新动力气象及其他大气专业课笔记^_^)

【3】《动力气象学引论》:原书第五版/(美)詹姆斯·霍顿(James R. Holton),(美)格雷戈瑞·哈金(Gregory J.Hakim)著;段明铿,王文,刘毅庭译. —北京:电子工业出版社,2019.6

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值