高大动笔记:Chap2—大气运动的整体性质
根据《高等大气动力学》课程笔记总结,供需要的同学参考,有缺漏或错误的请联系我改正,谢谢!
超链接有系列文章的链接,每一个对应一章
目录
一、质量守恒定律
如果不考虑污染物质及其他源和汇,大气总质量守恒。
静力平衡
可以推出
二、角动量守恒定律
1.一般质点组的角动量守恒定律
对于质点组:
因此有外力矩
如果外力矩为零,则质点组角动量守恒
2.大气中的角动量守恒定律
(1)地球大气
孤立系统
(2)忽略地球自转,可以原点在地心,不随地球的
(3)大气自身的粘性,大气与地球之间的摩擦力都是内力
(4)重力是有心力
因此地球和大气所构成孤立系统的总角动量守恒
大气状态定常
因为地球角动量不变,,而大气随地球一起自转的那部分角动量
也不变,因此相对于地球而运动的这部分大气的角动量
定常状态下
大气状态非定常
假设
自由大气、无摩擦、无地形(气压梯度力指向地心)、采用惯性坐标系
无科氏力
这样,大气自身称为孤立体,绝对角动量守恒
3.带状环流的角动量原理
在薄层近似下,
大气相对于地轴的绝对角动量
其中为绝对角动量,
为相对角动量,
为牵连角动量
因此有
坐标系下的运动方程
上面方程中,上式下式
对该式子进行积分
将积分式子右边分为、
和
三个部分
先看部分,由于
又根据Chap1给出的运动学边界条件,地表和大气层顶垂直速度为0
于是有
再看部分,由于Chap1中的静力学方程:
在带状环流积分中全微分积分为0,因此
于是有
再看部分,由于
于是有
部分已经计算出,现在看
部分,因为有
的全导数
所以计算部分
后两项和
在带状环流积分中为0,因此
由于绝对、相对和牵连角动量的关系,积分之即有
若全球范围(则、
)且无地形起伏(
)
最后可以得到结论:全球范围,无地形起伏,则大气绝对角动量守恒
三、能量守恒
动能
位能(势能)
内能
在此基础上,定义焓
根据静力平衡方程
因此位能
其中是相对位势,
是表面位势。
根据,可得
因此在自由大气绝热系统中,能量一定守恒!
下面我们推导坐标下总能量方程
(1)引入三维矢量
连续方程
注意到
(2)再利用运动方程及连续方程,导出总能的变率
(3)由热力学方程可以推出焓的时间变率
(4)最终可以推出总能量守恒:
这部分内容详情见《数值天气预报的数学物理基础》P53—56,第三章第5节“能量方程”部分的内容
不管是内能还是位能(合称总位能),最后都需要转化为大气运动的动能。有效位能是指该大气的总位能与将其绝热调整到稳定层结正压状态下的总位能之差,这是绝热过程可能释放的最大位能,叫做有效位能。而其中,有效位能并不能完全转化为大气运动的动能。
一般地,实际大气中平均有效位能只占平均位能的二百分之一。平均动能是平均有效位能的十分之一。所以,大气中的位能只有很少很少一部分可以转变为大气的动能,驱动大气的运动。因此,大气一般说来是一部效率很低的热机。
大气运动可以分为:
- 无旋有辐散运动
- 有旋无辐散运动
研究中经常取水平无辐散作为大气运动的很好的近似(即舍去大气的辐合辐散运动),这是因为大气运动主要体现在于其涡旋性。
参考文献
主要内容来自任保华教授所授课的《高等大气动力学》。
参考的教材
【1】《数值天气预报的数学物理基础》. 第一卷/曾庆存著. —北京:科学出版社,2019.4
【2】《大气动力学原理》.(日)小仓义光著;黄荣辉,译. —北京:科学出版社,1981
《数值天气预报的数学物理基础》有很多偏数学原理的推导过程,为了使得对高大动有更加简洁的理解和清晰的框架,可能会省去一些推导过程,而着重强调其物理情形和理解。对于这一部分有更加深刻学习要求的同学可以研读原著。
前置知识教材
主要包括动力气象学的相关内容(后续作者也会更新动力气象及其他大气专业课笔记^_^)
【3】《动力气象学引论》:原书第五版/(美)詹姆斯·霍顿(James R. Holton),(美)格雷戈瑞·哈金(Gregory J.Hakim)著;段明铿,王文,刘毅庭译. —北京:电子工业出版社,2019.6