高大动Chap1—基本运动方程、初值问题

高大动笔记:Chap1—基本运动方程、初值问题

根据《高等大气动力学》课程笔记总结,供需要的同学参考,有缺漏或错误的请联系我改正,谢谢!

超链接有系列文章的链接,每一个对应一章


目录

一、控制大气运动的基本方程

1.运动方程的近似

2.一般坐标变换

二、标准层结近似

三、边界条件、初条件(初边值问题)

1.水平边界条件(人为设定)

(1)周期条件

(2)刚壁条件

2.垂直边界条件

(1)几何边界条件

(2)运动学边界条件

(3)物理学边界条件

3.初条件

四、局地平面近似(标准坐标系)下的Navier-Stokes方程组


一、控制大气运动的基本方程

  • 控制大气运动满足如下的方程

动量方程

\frac{\mathrm{d} \boldsymbol{V}}{\mathrm{d} \boldsymbol{t}} =\boldsymbol{P}+\boldsymbol{g}+\boldsymbol{D}-2\boldsymbol{\varOmega} \times \boldsymbol{V}

$\boldsymbol{P}$:气压梯度力,$\boldsymbol{g}$:重力,$\boldsymbol{D}$:摩擦力,$2\boldsymbol{\varOmega} \times \boldsymbol{V}$:科里奥利力

连续方程

\frac{1}{\rho} \frac{\mathrm{d} \rho}{\mathrm{d} t} +\nabla \cdot \boldsymbol{V}=0

热力学方程

C_{p} \frac{\mathrm{d} T}{\mathrm{d} t} -\frac{RT}{p} \frac{\mathrm{d} p}{\mathrm{d} t}=\frac{\mathrm{d} Q}{\mathrm{d} t}

气体状态方程

p=\rho RT \quad {\rm or} \quad p\alpha=RT

分解到球坐标系中($\lambda$$\theta$$r$

$\lambda$:指向东方(局地东方)

$\theta$:余纬:\theta=\frac{\pi}{2}-\phi,由北向南

$r$:矢径方向


1.运动方程的近似

近似假设

  • 自由大气:$\boldsymbol{D}=0$
  • 绝热大气:$\frac{\mathrm{d} Q}{\mathrm{d} t}=0$
  • 薄层近似:大气厚度 $H\sim 10{\rm km}$,近似为0,$r \approx a$(地球半径)
  • 准静力平衡:$\frac{\partial p}{\partial r} =-\rho g$得到球坐标系下的速度分解,$L$(特征尺度)$\sim 10^{3} {\rm km}$

得到球坐标系下的速度分解

\boldsymbol{V}= v_{\lambda} \boldsymbol{\lambda}+v_{\theta} \boldsymbol{\theta}+v_{r} \boldsymbol{r}

球坐标系下分量形式的速度表达式为

\left\{\begin{array} {lr} v_{\lambda}=r \text{sin}\theta \frac{\mathrm{d} \lambda}{\mathrm{d} t} = r \text{sin}\theta \dot{\lambda} \\ v_{\theta}=r \frac{\mathrm{d} \theta}{\mathrm{d} t}=r\dot{\theta}\\ v_{r}=\frac{\mathrm{d} r}{\mathrm{d} t}=\dot{r} \end{array}\right.

球坐标系下的速度导数

\begin{aligned} \frac{\mathrm{d} \boldsymbol{V}}{\mathrm{d} t} &=\frac{\mathrm{d}}{\mathrm{d}t}(v_{\lambda} \boldsymbol{\lambda}+v_{\theta} \boldsymbol{\theta}+v_{r} \boldsymbol{r})\\ &=\frac{\mathrm{d}v_{\lambda}}{\mathrm{d}t}\boldsymbol{\lambda} +\frac{\mathrm{d}v_{\theta}}{\mathrm{d}t}\boldsymbol{\theta} +\frac{\mathrm{d}v_{r}}{\mathrm{d}t}\boldsymbol{r}+ {\color{blue} v_{\lambda}\frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t} +v_{\theta}\frac{\mathrm{d}\boldsymbol{\theta}}{\mathrm{d}t} +v_{r}\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}} \end{aligned}

根据全局导数和局地导数的关系

\frac{\mathrm{d}}{\mathrm{d}t} =\frac{\partial}{\partial t} +\frac{v_{\lambda}}{a\text{sin}\theta} \frac{\partial}{\partial \lambda} +\frac{v_{\theta}}{a} \frac{\partial}{\partial \theta} +v_{r} \frac{\partial}{\partial r}

三个方向矢量的导数

\left\{\begin{array} {lr} \frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t}= \frac{\partial \boldsymbol{\lambda}}{\partial t} +\frac{v_{\lambda}}{a\text{sin}\theta} \frac{\partial \boldsymbol{\lambda}}{\partial \lambda} +\frac{v_{\theta}}{a} \frac{\partial \boldsymbol{\lambda}}{\partial \theta} +v_{r} \frac{\partial \boldsymbol{\lambda}}{\partial r} \\ \frac{\mathrm{d}\boldsymbol{\theta}}{\mathrm{d}t}= \frac{\partial \boldsymbol{\theta}}{\partial t} +\frac{v_{\lambda}}{a\text{sin}\theta} \frac{\partial \boldsymbol{\theta}}{\partial \lambda} +\frac{v_{\theta}}{a} \frac{\partial \boldsymbol{\theta}}{\partial \theta} +v_{r} \frac{\partial \boldsymbol{\lambda}}{\partial r} \\ \frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}= \frac{\partial \boldsymbol{r}}{\partial t} +\frac{v_{\lambda}}{a\text{sin}\theta} \frac{\partial \boldsymbol{r}}{\partial \lambda} +\frac{v_{\theta}}{a} \frac{\partial \boldsymbol{r}}{\partial \theta} +v_{r} \frac{\partial \boldsymbol{r}}{\partial r} \end{array}\right.

由于以下各项为0

\frac{\partial \boldsymbol{\lambda}}{\partial t}=\frac{\partial \boldsymbol{\theta}}{\partial t}=\frac{\partial \boldsymbol{r}}{\partial t}=0 \quad \frac{\partial \boldsymbol{\lambda}}{\partial \theta}=\frac{\partial \boldsymbol{r}}{\partial r}=0 \quad \frac{\partial \boldsymbol{\theta}}{\partial r}=0

利用弧长与圆心角和半径的关系(弧长=圆心角\times半径)

  • 推导出大气运动的控制方程

\left\{\begin{array} {lr} \frac{\mathrm{d}v_{\lambda}}{\mathrm{d}t}+\frac{v_{\lambda}v_{\theta}}{a}\text{cot}\theta= -\frac{1}{\rho a\text{sin}\theta}\frac{\partial p}{\partial \lambda}-2\varOmega \text{cos}\theta v_{\theta} \\ \frac{\mathrm{d}v_{\theta}}{\mathrm{d}t}-\frac{v_{\lambda}^2}{a}\text{cot}\theta= -\frac{1}{\rho a}\frac{\partial p}{\partial \theta}+2\varOmega \text{cos}\theta v_{\lambda} \\ \frac{\partial p}{\partial r}=-\rho g \\ C_{p} \frac{\mathrm{d} T}{\mathrm{d} t} -\frac{RT}{p} \frac{\mathrm{d} p}{\mathrm{d} t}=0 \\ \frac{1}{\rho}\frac{\mathrm{d}\rho}{\mathrm{d}t} +\frac{1}{a\text{sin}\theta}\frac{\partial v_{\lambda}}{\partial \lambda} +\frac{1}{a}\frac{\partial v_{\theta}}{\partial \theta} +\frac{\partial v_{r}}{\partial r}=0 \\ p=\rho RT \end{array}\right.

关于坐标系(“垂直”坐标系)

气象上常用的坐标:$p$(气压)、$\sigma$(标准化气压or地形坐标)

  • $\sigma$坐标系

$\sigma$坐标系也称作标准化气压坐标系或地形坐标系,其定义为

\sigma=\frac{p}{p_{s}}

其中$p_{s}$表示地面气压

P.S. 选择气象要素作为第三个坐标,必须与原第三坐标形成单调关系!


2.一般坐标变换

选择任意垂直坐标$\zeta$,对于任意一个变量$F$(可在$r$坐标、$\zeta$坐标中分解)

F(\lambda,\theta,t,\zeta)=F(\lambda,\theta,t,z(\lambda,\theta,t,\zeta))

$s=\lambda,\theta,t$

(\frac{\partial F}{\partial s})_{\zeta}=(\frac{\partial F}{\partial s})_{z}+\frac{\partial F}{\partial z}(\frac{\partial z}{\partial s})_{\zeta}

$s=\zeta,z$

\frac{\partial F}{\partial \zeta}=\frac{\partial F}{\partial z}\frac{\partial z}{\partial \zeta}

\frac{\partial F}{\partial z}=\frac{\partial F}{\partial \zeta}\frac{\partial \zeta}{\partial z}

任意变量的梯度和散度

\left\{\begin{array} {lr} \nabla_{\zeta} F=\nabla_{z} F+\frac{\partial F}{\partial \zeta}\frac{\partial \zeta}{\partial z}\nabla_{\zeta} z \\ \nabla_{\zeta} \cdot \boldsymbol F=\nabla_{z} \cdot \boldsymbol F+\frac{\partial \boldsymbol F}{\partial \zeta}\frac{\partial \zeta}{\partial z}\nabla_{\zeta} z \end{array}\right.

基于上述的变量的梯度和散度表达式,可以进行连续方程的坐标变换

\frac{1}{\rho} \frac{\mathrm{d} \rho}{\mathrm{d} t} +\nabla \cdot \boldsymbol{V}=0

\frac{\mathrm{d} \ln_{}{\rho} }{\mathrm{d} t} +\nabla_{h} \cdot \boldsymbol{V_{h}}+\frac{\partial v_{r}}{\partial r}=0

根据下面的关系式

\dot{\zeta}=\frac{\mathrm{d}\zeta}{\mathrm{d} t}

(\frac{\mathrm{d} F}{\mathrm{d} t})_{\zeta}=(\frac{\partial F}{\partial t})_{\zeta}+\boldsymbol{V_{h}} \cdot \nabla F+\zeta \frac{\partial F}{\partial \zeta}

可以推导出

\frac{\mathrm{d}}{\mathrm{d} t}(\ln_{}{\frac{\partial p}{\partial \zeta}}) +\nabla_{\zeta} \cdot \boldsymbol{V_{h}}+\frac{\partial \dot{\zeta}}{\partial \zeta}=0

  • 不同坐标系中$F$的全导数

$r$坐标系和$\zeta$坐标系中,任意变量$F$具有相同的全导数

(\frac{\mathrm{d} F}{\mathrm{d} t})_{\zeta}=(\frac{\mathrm{d} F}{\mathrm{d} t})_{r}


二、标准层结近似

标准层结近似下的小扰动方程

\left\{\begin{array} {lr} \frac{\partial v_{\theta}'}{\partial t} =-\frac{1}{a}\frac{\partial \phi'}{\partial \theta} -RT'\frac{\partial }{\partial \theta} \\ \nabla_{\zeta} \cdot \boldsymbol F=\nabla_{z} \cdot \boldsymbol F+\frac{\partial \boldsymbol F}{\partial \zeta}\frac{\partial \zeta}{\partial z}\nabla_{\zeta} z \end{array}\right.


三、边界条件、初条件(初边值问题)

1.水平边界条件(人为设定)

一般而言分为周期边界条件刚壁条件

(1)周期条件

F\mid_{x}=F\mid_{x+L}

(2)刚壁条件

\boldsymbol{v}\cdot\boldsymbol{n}\mid_{l}=0


2.垂直边界条件

一般而言分几何边界条件运动学边界条件物理学边界条件

(1)几何边界条件

\lim_{\sigma \to 1}\phi=\phi_{s}(\theta,\lambda)=gz_{s}

(2)运动学边界条件

地表面是物质面,因此地表面和大气层顶的$\sigma$变率(即垂直速度)是0

\begin{aligned} \lim_{\sigma \to 1}\dot{\sigma}=0\\ \lim_{\sigma \to 0}\dot{\sigma}=0 \end{aligned}

(3)物理学边界条件

单位截面积上垂直气柱内总质量有限,因此能量也有限

p_{s}g^{-1}\int_{0}^{1}[\frac{v_{\theta}^2+v_{\lambda}^2}{2}+C_{v}T+\varPhi]{\mathrm{d}\sigma}<\infty


3.初条件

\begin{aligned} &\lim_{t \to 0} v_{\lambda}(\theta,\lambda,t,\sigma)=v_{\lambda}^{(0)}(\theta,\lambda,t,\sigma)\\ &\lim_{t \to 0} v_{\theta}(\theta,\lambda,t,\sigma)=v_{\theta}^{(0)}(\theta,\lambda,t,\sigma) \end{aligned}

P.S. 以下有些垂直边界条件的提法是错误的或不准确的!

  • 大气和宇宙空间无质量交换

\lim_{z \to \infty}\rho\varOmega=0

  • 大气和外界无能量交换

\lim_{z \to \infty}(\rho u^2,\rho v^2,\rho \varOmega^2)\cdot\varOmega=0


四、局地平面近似(标准坐标系)下的Navier-Stokes方程组

我们可以写出局地坐标系下Navier-Stokes方程组

\left\{\begin{array} {lr} \frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+ v\frac{\partial u}{\partial y}+\dot{\sigma}\frac{\partial u}{\partial \sigma} =-(\frac{\partial \phi}{\partial x}+ RT\frac{\partial \ln_{}{p_{s}}}{\partial x})+fv \\ \frac{\partial v}{\partial t}+u\frac{\partial v}{\partial x}+ v\frac{\partial v}{\partial y}+\dot{\sigma}\frac{\partial v}{\partial \sigma} =-(\frac{\partial \phi}{\partial y}+ RT\frac{\partial \ln_{}{p_{s}}}{\partial y})-fu \\ \frac{\partial}{\partial t}(C_{p}T)+u\frac{\partial}{\partial x}(C_{p}T)+v\frac{\partial}{\partial y}(C_{p}T)+\dot{\sigma}\frac{\partial}{\partial \sigma}(C_{p}T) =\frac{R}{\sigma p_{s}}(p_{s}\dot{\sigma}+\sigma\dot{p_{s}}) \\ \frac{\partial p_{s}}{\partial t}+\frac{\partial}{\partial x}( p_{s}u)+\frac{\partial}{\partial y}( p_{s}v)+\frac{\partial}{\partial \sigma}(p_{s}\dot{\sigma})=0 \\ RT=-\sigma\frac{\partial \phi}{\partial \sigma} \\ p\alpha=RT \end{array}\right.

其中$f=2\varOmega \cos \theta$


参考文献

主要内容来自任保华教授所授课的《高等大气动力学》。

参考的教材

【1】《数值天气预报的数学物理基础》. 第一卷/曾庆存著. —北京:科学出版社,2019.4

【2】《大气动力学原理》.(日)小仓义光著;黄荣辉,译. —北京:科学出版社,1981

《数值天气预报的数学物理基础》有很多偏数学原理的推导过程,为了使得对高大动有更加简洁的理解和清晰的框架,可能会省去一些推导过程,而着重强调其物理情形和理解。对于这一部分有更加深刻学习要求的同学可以研读原著

前置知识教材

主要包括动力气象学的相关内容(后续作者也会更新动力气象及其他大气专业课笔记^_^)

【3】《动力气象学引论》:原书第五版/(美)詹姆斯·霍顿(James R. Holton),(美)格雷戈瑞·哈金(Gregory J.Hakim)著;段明铿,王文,刘毅庭译. —北京:电子工业出版社,2019.6

  • 27
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值