多项式回归 过拟合 模型泛化 模型误差

博客探讨了多项式回归在拟合非线性数据时可能出现的过拟合和欠拟合问题。通过实例解释了泛化能力的概念,并介绍了模型正则化技术,如岭回归和LASSO回归,来平衡预测准确度和模型复杂度。这两种方法都在损失函数中添加正则项,以提高模型的泛化能力,防止过拟合。
摘要由CSDN通过智能技术生成

很过数据是没有线性关系的==》非线性 =》多项式模拟非线性曲线  

添加的特征是原来特征的线性组合==》解决非线性问题=》数据集升维      (PCA降维)  有时升维有时降维

  =》x^2  x  虽然是同一特征 但我们把它x^2当做是另一个特征

Pipeline   创建多项式回归:  通过增加特征 依然使用使用线性回归

多项式回归拟合非线性:

一个二次曲线   ==》过拟合  100次太复杂了  训练集上好  在验证集  和  测试集不好  欠拟合 1次不够

学习狗的图片:

有眼睛的是狗:只学习一部分特征 欠拟合

四爪 眼睛 ... 斑点 :所有符合的基础上又加上了 斑点   斑点只是一部分狗才有  可过拟合学出了斑点特征      太细节的特征

 

泛化能力:由此及彼能力       根据训练得到的曲线         面对新的数据的能力

最终的模型最终能力不是拟合训练集 而是更好的拟合  测试集 新数据 =》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值