dp板子

该博客主要介绍了动态规划在解决最长递增子序列(LIS)和最长公共子序列(LCS)问题上的应用。通过三种背包问题的模板展示了动态规划的基本思想,包括01背包、完全背包和多重背包。同时,给出了最长递增子序列的O(n^2)解决方案和最长有序子序列的算法实现。最后,讲解了如何找到两个字符串的最长公共子序列。这些算法对于理解和解决组合优化问题具有重要意义。
摘要由CSDN通过智能技术生成

背包

const int MAXN = 101;
const int SIZE = 50001;

int dp[SIZE];
int volume[MAXN], value[MAXN], c[MAXN];
int n, v;           //  总物品数,背包容量

//  01背包
void ZeroOnepark(int val, int vol)
{
    for (int j = v ; j >= vol; j--)
    {
        dp[j] = max(dp[j], dp[j - vol] + val);
    }
}

//  完全背包
void Completepark(int val, int vol)
{
    for (int j = vol; j <= v; j++)
    {
        dp[j] = max(dp[j], dp[j - vol] + val);
    }
}

//  多重背包
void Multiplepark(int val, int vol, int amount)
{
    if (vol * amount >= v)
    {
        Completepark(val, vol);
    }
    else
    {
        int k = 1;
        while (k < amount)
        {
            ZeroOnepark(k * val, k * vol);
            amount -= k;
            k <<= 1;
        }
        if (amount > 0)
        {
            ZeroOnepark(amount * val, amount * vol);
        }
    }
}

int main()
{
    while (cin >> n >> v)
    {
        for (int i = 1 ; i <= n ; i++)
        {
            cin >> volume[i] >> value[i] >> c[i];      //   费用,价值,数量
        }
        memset(dp, 0, sizeof(dp));
        for (int i = 1; i <= n; i++)
        {
            Multiplepark(value[i], volume[i], c[i]);
        }
        cout << dp[v] << endl;
    }
    return 0;
}

最长公共递增子序列

/*
 *  最长公共递增子序列 O(n^2)
 *  f记录路径,DP记录长度, 用a对b扫描,逐步最优化。
 */
const int N = 1010;

int f[N][N], dp[N];

int gcis(int a[], int la, int b[], int lb, int ans[])
{   //  a[1...la], b[1...lb]
    int i, j, k, mx;
    memset(f, 0, sizeof(f));
    memset(dp, 0, sizeof(dp));
    for (i = 1; i <= la; i++)
    {
        memcpy(f[i], f[i-1], sizeof(f[0]));
        for (k = 0, j = 1; j <= lb; j++)
        {
            if (b[j - 1] < a[i - 1] && dp[j] > dp[k])
            {
                k = j;
            }
            if (b[j - 1] == a[i - 1] && dp[k] + 1 > dp[j])
            {
                dp[j] = dp[k] + 1,
                f[i][j] = i * (lb + 1) + k;
            }
        }
    }
    for (mx = 0, i = 1; i <= lb; i++)
    {
        if (dp[i] > dp[mx])
        {
            mx = i;
        }
    }
    for (i = la * lb + la + mx, j = dp[mx]; j; i = f[i / (lb + 1)][i % (lb + 1)], j--)
    {
        ans[j - 1] = b[i % (lb + 1) - 1];
    }
    return dp[mx];
}

最长有序子序列

/*
 *  递增(默认)
 *  递减 
 *  非递增
 *  非递减 (1)>= && <  (2)<  (3)>=
 */
const int MAXN = 1001;

int a[MAXN], f[MAXN], d[MAXN];   //  d[i] 用于记录 a[0...i] 以 a[i] 结尾的最大长度

int bsearch(const int *f, int size, const int &a)
{
    int l = 0, r = size - 1;
    while (l <= r)
    {
        int mid = (l + r) / 2;
        if (a > f[mid - 1] && a <= f[mid])  //  (1)
        {
            return mid; 
        }
        else if (a < f[mid])
        {
            r = mid - 1;
        }
        else
        {
            l = mid + 1;
        }
    }
    return -1;
}

int LIS(const int *a, const int &n)
{
    int i, j, size = 1;
    f[0] = a[0];
    d[0] = 1;
    for (i = 1; i < n; ++i)
    {
        if (a[i] <= f[0])               //  (2)
        {
            j = 0;
        }
        else if (a[i] > f[size - 1])    //  (3)
        {
            j = size++;
        }
        else
        {
            j = bsearch(f, size, a[i]);
        }
        f[j] = a[i];
        d[i] = j + 1;
    }
    return size;
}

int main()
{
    int i, n;
    while (scanf("%d", &n) != EOF)
    {
        for (i = 0; i < n; ++i)
        {
            scanf("%d", &a[i]);
        }
        printf("%d\n", LIS(a, n));      // 求最大递增 / 上升子序列(如果为最大非降子序列,只需把上面的注释部分给与替换)
    }
    return 0;
}

最长公共子序列

const int N = 1010;

int a[N][N];

int LCS(const char *s1, const char *s2)
{   //  s1:0...m, s2:0...n
    int m = (int)strlen(s1), n = (int)strlen(s2);
    int i, j;
    a[0][0] = 0;
    for (i = 1; i <= m; ++i)
    {
        a[i][0] = 0;
    }
    for (i = 1; i <= n; ++i)
    {
        a[0][i] = 0;
    }
    for (i = 1; i <= m; ++i)
    {
        for (j = 1; j <= n; ++j)
        {
            if (s1[i - 1] == s2[j - 1])
            {
                a[i][j] = a[i - 1][j - 1] + 1;
            }
            else if (a[i - 1][j] > a[i][j - 1])
            {
                a[i][j]= a[i - 1][j];
            }
            else
            {
                a[i][j] = a[i][j - 1];
            }
        }
    }
    return a[m][n];
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

狗蛋儿l

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值