- 算法输入是训练集D,基尼系数的阈值,样本个数阈值。
- 输出是决策树T。
- 算法从根节点开始,用训练集递归的建立CART树。
- 1) 对于当前节点的数据集为D,如果样本个数小于阈值或者没有特征,则返回决策子树,当前节点停止递归。
- 2) 计算样本集D的基尼系数,如果基尼系数小于阈值,则返回决策树子树,当前节点停止递归。
- 3) 计算当前节点现有的各个特征的各个特征值对数据集D的基尼系数。
- 4) 在计算出来的各个特征的各个特征值对数据集D的基尼系数中,选择基尼系数最小的特征A和对应的特征值a。根据这个最优特征和最优特征值,把数据集划分成两部分D1和D2,同时建立当前节点的左右节点,做节点的数据集D为D1,右节点的数据集D为D2.
- 5) 对左右的子节点递归的调用1-4步,生成决策树。
CART分类树算法
最新推荐文章于 2023-11-26 23:46:06 发布