73. 矩阵置零

给定一个 m x n 的矩阵,如果一个元素为 0,则将其所在行和列的所有元素都设为 0。请使用原地算法

示例 1:

输入: 
[
  [1,1,1],
  [1,0,1],
  [1,1,1]
]
输出: 
[
  [1,0,1],
  [0,0,0],
  [1,0,1]
]

示例 2:

输入: 
[
  [0,1,2,0],
  [3,4,5,2],
  [1,3,1,5]
]
输出: 
[
  [0,0,0,0],
  [0,4,5,0],
  [0,3,1,0]
]

进阶:

  • 一个直接的解决方案是使用  O(mn) 的额外空间,但这并不是一个好的解决方案。
  • 一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。
  • 你能想出一个常数空间的解决方案吗?

class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        int col0=1;
        int n=matrix.size();
        for(int i = 0; i < n; ++ i)
         {
             if(matrix[i][0] == 0)
                 col0 = 0;
             for(int j = 1; j < matrix[i].size(); ++ j)
                 if(matrix[i][j] == 0)
                     matrix[i][0] = matrix[0][j] = 0;
         }
        for(int i = n-1; i >=0;  --i)
         {
             for(int j = 1; j < matrix[i].size();  ++j)
             {
                 if(matrix[i][0] == 0 || matrix[0][j] == 0)
                     matrix[i][j] = 0;
             }
             
         }
        for(int i=0;i<n;++i)
        {
            if(col0 == 0)
                 matrix[i][0] = 0;
        }
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值