What is machine learning?
1.什么是学习?
对人类来说学习就是通过 观察(视觉、听觉、嗅觉等)掌握某种 技能。比如我们从到大认识世界的过程。
对于 机器学习,我们希望计算机能够像人类一样,通过在大量的数据中观察,发现事物的规律,获得某种分析与解决问题的能力。
When can machine learning?
- 所要解决的问题存在一些规律或者模式,可以通过学习提高表现;(exists some ‘underlying pattern’ to be learned)
- 用普通的程序难以解决;(but no programmable (easy) definition)
- 有针对所要解决问题的大量样本可供使用;(somehow there is data about the pattern)
Applications of machine learning
机器学习的应用体现生活(衣、食、住、行、教育、娱乐等)的方方面面。
Components of machine learning
基本术语:
输入:X
输出:Y
理想决策函数:f
训练样本:data
假设空间:hypothesis set,在训练样本data中,通过算法A,在假设空间中找到最合适的决策函数矩g,使这个函数最接近我们理想的函数f,矩g就是我们想要的模型表达式。
2.机器学习的基本流程(假设为监督学习)
Machine learning and Other Fields
机器学习和数据挖掘(Machine Learning and Data Mining)
这两个领域很像,但是也有一些细微的差别,具体见下图:机器学习和人工智能(Machine Learning and Artificial Intelligence):机器学习只是实现人工智能的一种方式。
- 机器学习和统计(Machine Learning and Statistics):统计是实现机器学习的一种方法。