HashMap详解

本文转载自

http://www.cnblogs.com/DSNFZ/articles/7634042.html

 

1)HashMap概述

HashMap是基于哈希表的map接口的非同步实现,此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

 

2)HashMap数据结构

在java语言编程中,最基本的数据结构就两种:数组和引用,其他所有的数据结构都可以通过这两个基本的数据结构来实现,在jkd 1.7以前,hashmap就是一个链表散列的结构,但是在jdk1.8发布后,hashmap的链表长度大于一定值过后,变编程红黑树,关于红黑树的概念,在上篇文章中进行了讲解:

其HashMap的具体结构如下图所示:

 

这里写图片描述

java中采用的便是链地址法,便是每个数组元素上都是一个链表。当数据被hash后,得到数组下标,将数据放在对应数组下标的链表上

其中每个元素都用node节点表示:

 static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
}

node是hashmap的一个内部类,用来储存数据和保持链表结构的。它的本质就是一个映射(键值对)

当然,会产生两个key值产生同一个位置,(最主要的便是因为index的产生原理,当然也有可能是产生了一样的hash值)这种情况叫哈希碰撞。当然hash算法计算结果越分散均匀,发生hash碰撞的机率就越小,map的存储效率就越高。

 

hashmap中又一个很重要的字段就是Node[] table。如上图所示,这就是hashmap的基本结构,构成链表的数组。

如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。

 

在此之前,我们先来了解一下hashmap一些非常非常重要的参数。源代码中如下:

 

    
     //默认的初始容量
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    //最大容量2^30
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //加载因子(如果值太高, 虽说会提高空间利用率, 但是加大查找的开销)
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //由链表转换成树的阈值
    static final int TREEIFY_THRESHOLD = 8;
    //由树转换成链表的阈值
    static final int UNTREEIFY_THRESHOLD = 6;
    //当桶中的bin被树化时最小的hash表容量。(如果表中的节点太多,则重新调整表大小)这个值至少是TREEIFY_THRESHOLD的4倍。
    static final int MIN_TREEIFY_CAPACITY = 64;
    //hashmap结构修改的次数(注意是结构)
    transient int modCount;
    // 下次扩容阀值(容量*加载因子)
    int threshold; 
    //映射对的数量 
    transient int size;

 

上面这些参数的是非常非常重要的,其重要性相当于hashmap的数据结构的重要性。在本篇中,我们运用到并重点讲解的为一下几个参数:

 

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
static final float DEFAULT_LOAD_FACTOR = 0.75f;
transient int size;
transient int modCount;
int threshold;
final float loadFactor;

 

首先可以单刀,Node[] table的默认长度是16,loadFactor的默认大小为0.75,threshold是hashmap所能容纳的最大数据量的Node个数,默认为0.75,threshold=DEFAULT_INITIAL_CAPACITY*loadFactor;当添加元素数量超过这个数量过后,就要进行扩容,扩容后hashmap的容量是之前的两倍。对于0.75,建议大家不要轻易修改。除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子Load factor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。

 

size就是在这个hashmpa中实际存在的node数量。modCount便是hashmap结构修改的次数。在之前对iterator(迭代器)进行讲解的时候我已经进行了说明,需要注意的是在hashmap中modcount指的是结构更改的次数,例如添加新的node,但是如果是替换原有node的value,modcount是不变的,因为它不属于结构变化。

 

有兴趣可以了解下:在HashMap中,哈希桶数组table的长度length大小必须为2的n次方(一定是合数),这是一种非常规的设计,常规的设计是把桶的大小设计为素数。相对来说素数导致冲突的概率要小于合数,具体证明可以参考

http://blog.csdn.net/liuqiyao_01/article/details/14475159

Hashtable初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证还是素数)。HashMap采用这种非常规设计,主要是为了在取模和扩容时做优化,同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。

 

3)确认hashmap索引位置

代码:

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

 

这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算。

对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:我们通过h & (table.length -1)来计算该对象应该保存在table数组的哪个索引处。

https://blog.csdn.net/zs319428/article/details/81982770(用位运算的原因)

这个方法非常巧妙,它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

在JDK1.8的实现中,优化了高位运算的算法,通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。

我们举个栗子:

这里写图片描述

大概的得到索引的流程就是上面所示。

 

4)hashmap的put实现方法:

put函数大致的思路为:

  1. 对key的hashCode()做hash,然后再计算index;
  2. 如果没碰撞直接放到bucket里;
  3. 如果碰撞了,以链表的形式存在buckets后;
  4. 如果碰撞导致链表过长(大于等于TREEIFY_THRESHOLD),就把链表转换成红黑树;
  5. 如果节点已经存在就替换old value(保证key的唯一性)
  6. 如果bucket满了(超过load factor*current capacity),就要resize。

代码如下  

 

public V put(K key, V value) {
	return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
	Node<K, V>[] tab;
	Node<K, V> p;
	int n, i;
	if ((tab = table) == null || (n = tab.length) == 0)
		n = (tab = resize()).length; // 当数组table为null时, 调用resize生成数组table, 并令tab指向数组table
	if ((p = tab[i = (n - 1) & hash]) == null) // 如果新存放的hash值没有冲突
		tab[i] = newNode(hash, key, value, null); // 则只需要生成新的Node节点并存放到table数组中即可
	else { // 否则就是产生了hash冲突
		Node<K, V> e;
		K k;
		if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
			e = p; // 如果hash值相等且key值相等, 则令e指向冲突的头节点
		else if (p instanceof TreeNode) // 如果头节点的key值与新插入的key值不等, 并且头结点是TreeNode类型,说明该hash值冲突是采用红黑树进行处理.
			e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value); // 向红黑树中插入新的Node节点
		else { // 否则就是采用链表处理hash值冲突
			for (int binCount = 0;; ++binCount) { // 遍历冲突链表, binCount记录hash值冲突链表中节点个数
				if ((e = p.next) == null) { // 当遍历到冲突链表的尾部时
					p.next = newNode(hash, key, value, null); // 生成新节点添加到链表末尾
					if (binCount >= TREEIFY_THRESHOLD - 1) // 如果binCount即冲突节点的个数大于等于 (TREEIFY_THRESHOLD(=8) - 1),便将冲突链表改为红黑树结构, 对冲突进行管理,
															// 否则不需要改为红黑树结构
						treeifyBin(tab, hash);
					break;
				}
				if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) // 如果在冲突链表中找到相同key值的节点, 则直接用新的value覆盖原来的value值即可
					break;
				p = e;
			}
		}
		if (e != null) { // 说明原来已经存在相同key的键值对
			V oldValue = e.value;
			if (!onlyIfAbsent || oldValue == null) // onlyIfAbsent为true表示仅当<key,value>不存在时进行插入, 为false表示强制覆盖;
				e.value = value;
			afterNodeAccess(e);
			return oldValue;
		}
	}
	++modCount; // 修改次数自增
	if (++size > threshold) // 当键值对数量size达到临界值threhold后, 需要进行扩容操作.
		resize();
	afterNodeInsertion(evict);
	return null;
}

 

5)hashmap的get方法:

思路如下:

  1. bucket里的第一个节点,直接命中;
  2. 如果有冲突,则通过key.equals(k)去查找对应的entry 
    若为树,则在树中通过key.equals(k)查找,O(logn); 
    若为链表,则在链表中通过key.equals(k)查找,O(n)。

代码如下:

public V get(Object key) {
	Node<K, V> e;
	return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K, V> getNode(int hash, Object key) {
	Node<K, V>[] tab;
	Node<K, V> first, e;
	int n;
	K k;
	// first指向hash值对应数组位置中的Node节点
	if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
		// 如果first节点对应的hash和key的hash相等(在数组相同位置,只是说明 hash&(n-1) 操作结果相等, 说明hash值的部分低位相等,
		// 并不代表整个hash值相等), 并且first对应的key也相等的话, first节点就是要查找的
		if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k))))
			return first;
		if ((e = first.next) != null) { // 说明存在hash冲突
			if (first instanceof TreeNode) // 说明由红黑树对hash值冲突进行管理
				return ((TreeNode<K, V>) first).getTreeNode(hash, key); // 查找红黑树
			do { // 说明hash值冲突是由链表进行管理
				if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
					return e;
			} while ((e = e.next) != null); // 对链表进行遍历
		}
	}
	return null;
}
 

 

 

注意:上述put的思路从putval的方法中是正确的,但是如果将putval方法打碎了分析,这个思路是不完全的,这就涉及到了hashmap的扩容机制,扩容机制中最重要的函数,resize();

 

jdk1.8中对hashmap有着非常棒的扩容机制,当链表长度大于某个值的时候,hashmap中的链表会变成红黑树结构,但是实际上真的是这样么?我们来看一下树化的函数是怎样进行的:

 

 

//该方法的主要作用是将冲突链表改为红黑树
final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)  
             resize();
    //当数组的长度< MIN_TREEIFY_CAPACITY(64) 时,只是单纯将数组扩容, 而没有直接将链表改为红黑树. 
    //因为hash数组长度还太小时导致多冲突的主要原因, 增大hash数组长度可以改善冲突情况
           
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

 

 

我们从第一个判断语句就发现,如果hashmap中table的长度小于64(MIN_TREEIFY_CAPACITY)的时候,其实是不会进行树化的,而是对这个hashmap进行扩容。所以我们发现,扩容不仅仅用于node的个数超过threshold的时候。

这个树化函数的设计便是想保持算法设计中的相对较好。

 

要了解扩容机制,我们先来看看jdk1.7是怎么设计的

 

 

void resize(int newCapacity) {   //传入新的容量  
    Entry[] oldTable = table;    //引用扩容前的Entry数组  
    int oldCapacity = oldTable.length;  
    if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)了  
        threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了  
        return;  
    }  
  
    Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组  
    transfer(newTable);                         //!!将数据转移到新的Entry数组里  
    table = newTable;                           //HashMap的table属性引用新的Entry数组  
    threshold = (int) (newCapacity * loadFactor);//修改阈值  
} 

 

 

其中transfer方法如下:

 

 

void transfer(Entry[] newTable) {  
    Entry[] src = table;                   //src引用了旧的Entry数组  
    int newCapacity = newTable.length;  
    for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组  
        Entry<K, V> e = src[j];             //取得旧Entry数组的每个元素  
        if (e != null) {  
            src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)  
            do {  
                Entry<K, V> next = e.next;  
                int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置  
                e.next = newTable[i]; //标记[1]  
                newTable[i] = e;      //将元素放在数组上  
                e = next;             //访问下一个Entry链上的元素  
            } while (e != null);  
        }  
    }  
}  

 

 

 

我们通过上面代码可以知道,我们其实是遍历这个链表,然后将新的元素位置从头位置插入。这样我们可以知道,我们链表中的先后顺序是会改变的。前后顺序会反过来。下图可以很明白的开出这种变换关系:

jdk1.7扩容例图

 

那么,关于jdk1.8,我们做了哪些优化呢?

我们一定要先明确一个很重要的东西!!jdk1.8的table长度一定是2的幂!!

也就是说在jdk1.8中 resize()一定是扩大两倍的容量

 

我们在上篇文章中提到,jdk1.8中的索引和1.7的原则是一样的,都采用的是:h & (length - 1)作为node的索引

如果我们扩展长度为两倍,那么作为length-1就是尾端为一串1,其余为0的位序列。

那么位运算可以得到下图:

hashMap 1.8 哈希算法例图1

图a是扩展前产生的index,图二为扩展两倍容量的index,java1.8很巧妙的运用扩展2倍产生index这一点,我们直接判断hash值在位中,比n-1高一位的比特是1还是0来移动:

hashMap 1.8 哈希算法例图2

这就是上图中,红点标出的比特位便成了一种标志,我们通过判断它为0为1来进行扩容操作。红圈的16不是定值,而是原hashmap的table的长度。

 

上面的例子,也说明,我们table长度只有16的时候,有很大的情况能够让index相同,但是扩容后又不在拥有相同的index。

这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置,这一点正如之前的代码所示。

 

我们可以用一张图略微表示一下,下图中蓝色为新增的index位为0,绿色的表示1:

jdk1.8 hashMap扩容例图

 

当然,jdk1.8的resize代码复杂了很多,但是jdk1.8中的resize()流程还是很清晰的 ,它写的很好,怎么扩展,怎么移动链表,代码都很棒的:

 

 

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;  //oldTab变量指向原来的数组
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;  //oldThr变量保存原来数组的临界值
        int newCap, newThr = 0;
        if (oldCap > 0) {   //说明将要进行扩容操作
            if (oldCap >= MAXIMUM_CAPACITY) {  //由于最大容量不能超过 MAXMUM_CAPACITY, 当原来数组的容量达到这个值后不能再进行扩容
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && 
                     oldCap >= DEFAULT_INITIAL_CAPACITY)  // 进行两倍扩容
                newThr = oldThr << 1; 
        }
        else if (oldThr > 0) // oldCap=0, 说明原来的table数组为null 
            newCap = oldThr;   // 新创建的容器容量为原来容器中设定的临界值
        else {      //oldCap=0, oldThr=0,所以一切参数采用默认值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor; //新容器的临界值
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];  //创建新容量的数组
        table = newTab; 
        if (oldTab != null) {  //如果原来的数组中存在值, 需要将原来数组中的值保存到新数组中
            for (int j = 0; j < oldCap; ++j) {  //遍历原来的数组
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {  //如果原来数组位置中的值不为null, 则需要进行转移
                    oldTab[j] = null;   //置为null, 方便进行GC
                    if (e.next == null)   //说明原来数组中保存的hash值是没有冲突的, 也就是Node类型变量
                        newTab[e.hash & (newCap - 1)] = e;  //将e的hash值和(newCap-1)进行与操作, 从而获取在新数组中的位置
                    else if (e instanceof TreeNode)  // 说明原来数组中保存的hash值存在冲突, 是红黑树 TreeNode 类型变量, 采用红黑树管理冲突的键值对
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // 这说明原来数组中保存的hash值存在冲突, 但是并没有采用红黑树对冲突的Hash值进行管理, 而是采用Node链表进行管理
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                             //因为需要根据冲突链表中的hash值存放到新数组中,而新数组的长度是原数组长度的2倍, newTable.length-1 比 oldTable.length-1 多oldCap, 因此 hash&(newTable.length-1) 等价于 hash&(oldTable.length-1) + (hash&oldCap ==0 ? 0 : oldCap)
                            if ((e.hash & oldCap) == 0) {  
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);  //将链表复制到新数组中
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;  //返回新数组的引用
    }

 

 

其实说了这么多,hashmap如果只是运用的话,我们只需要了解她的基础函数和结构即可,但是我相信对hashmap的原理有了解肯定能加强对它理解和应用,对不同情况的使用也有理解。

 

 

源码一定是最好的老师。

展开阅读全文

没有更多推荐了,返回首页