Windows下运行kafka代码

如果没有安装kafka,可以参考我的另一篇文章

https://blog.csdn.net/zs319428/article/details/83859229

先来个生产者的

import java.util.Properties;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;



public class kafkaProducer {
    public static String topic = "test";
    public static Producer<String, String> producer;

    public static void main(String[] args) throws InterruptedException {
        Properties props = new Properties();
        props.put("bootstrap.servers", "127.0.0.1:9092");
        // 0不需要等待任何确认收到的信息(性能最佳) 1至少要等待leader已经成功将数据写入本地log(中等) all所有备份都成功写入日志(最强保住不丢)
        props.put("acks", "1");
        // 消息发送最大尝试次数
        props.put("retries", 0);
        // 批量处理的消息的大小 小于此size会进行批量打包发送 设置过大会占用太多内存 太小降低吞吐
        props.put("batch.size", 16384);
        // 批量发送消息的延迟为5ms
        props.put("linger.ms", 5);
        // 缓存数据的内存大小 如果产生数据速度大于发送速度 并且缓存超过这个大小 则抛出异常
        props.put("buffer.memory", 33554432);
        // key和value的编码序列化方法
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        producer = new KafkaProducer<String, String>(props);
        for (int i = 0; i < 10000; i++) {
            Thread.sleep(1);
            ProducerRecord<String, String> producerRecord =
                    new ProducerRecord<String, String>(topic, "", "topic向你发来慰问" + i);
            producer.send(producerRecord);
        }
    }
}

下面是消费者的

package com.kafka.mykafka;

import java.util.Arrays;
import java.util.Properties;
import java.util.concurrent.ArrayBlockingQueue;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

public class kafkaConsumer extends Thread {

    public static String topic = "test";
    /** 消息保存队列 */
    public static ArrayBlockingQueue<ConsumerRecord<String, String>> recordQueue =
            new ArrayBlockingQueue<ConsumerRecord<String, String>>(10000);
    public static KafkaConsumer<String, String> consumer;

    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "127.0.0.1:9092");
        // 分组。一条消息只会被同组的一个consume消费
        props.put("group.id", "test");
        // 自动提交offset; false的话还需要手动调用consumer.commitSync()
        props.put("enable.auto.commit", "true");
        // 自动提交offset的时间间隔 太短性能会差,太长如果crash重启后可能会重复消费的多(前提是消息在kafka服务器上还在)
        props.put("auto.commit.interval.ms", "1000");
        // session 过期时间 一旦心跳连接不上,超过这个时间就会链接断开
        props.put("session.timeout.ms", "30000");
        // # 重复消费,设置为latest,如游戏中的聊天等
        props.put("auto.offset.reset", "latest");
        // key和value的解码序列化方法
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        consumer = new KafkaConsumer<String, String>(props);
        // 绑定topic
        consumer.subscribe(Arrays.asList(topic));
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(1000);
            System.out.println("收到一次kafka消息,size:" + records);
            for (ConsumerRecord<String, String> record : records) {
                recordQueue.offer(record);
                System.out.printf("offset = %d, key = %s, value = %s\n", record.offset(),
                        record.key(), record.value());
            }
            System.out.println("recordQueue" + recordQueue.size());
        }
    }
}

然后再运行即可搞定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值