[LeetCode]LRU Cache

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations:get and put.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

Follow up:
Could you do both operations in O(1) time complexity?

Example:

LRUCache cache = new LRUCache( 2 /* capacity */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // returns 1
cache.put(3, 3);    // evicts key 2
cache.get(2);       // returns -1 (not found)
cache.put(4, 4);    // evicts key 1
cache.get(1);       // returns -1 (not found)
cache.get(3);       // returns 3
cache.get(4);       // returns 4



LRU数据结构:

public class LRUCache {
	int capacity;
	int size;
	HashMap<Integer,Node> map;
	DLinkedList dlist;
    public LRUCache(int capacity) {
    	this.capacity=capacity;
    	map=new HashMap<Integer,Node>();
    	dlist=new DLinkedList(0);
    	size=0;
    }
    public int get(int key) {
    	if(!map.containsKey(key)) return -1;
    	Node node=map.get(key);
    	dlist.remove(node);
    	dlist.addFirst(node);
    	return node.value;
    }
    
    public void put(int key, int value) {
        Node node=map.get(key);
        if(node!=null){
        	map.remove(key);
        	dlist.remove(node);
        	size--;
        }
    	if(capacity<=size){
    		if(capacity==0) return;
    		Node removeNode=dlist.tail.pre;
    		map.remove(removeNode.key);
    		dlist.remove(removeNode);
    		size--;
    	}
        Node newNode=new Node(key,value);
        map.put(key, newNode);
        dlist.addFirst(newNode);
        size++;
    }
}
class DLinkedList{
	Node head,tail;
	int size;
	
	public DLinkedList(int size) {
		head=new Node(-1,0);
		tail=new Node(-1,0);
		size=this.size;
		head.next=tail;tail.pre=head;
	}
	public void addFirst(Node node){
		node.next=head.next;
		head.next.pre=node;
		node.pre=head;
		head.next=node;
		size++;
	}
	public Node remove(Node node){
		if(node==null) return null;
		Node before=node.pre;
		Node after=node.next;
		before.next=after;after.pre=before;
		node.pre=null;node.next=null;
		size--;
		return node;
	}
	public void addFirst(int key,int val){
		Node node=new Node(key,val);
		addFirst(node);
	}
}
class Node{
	int key,value;
	Node next,pre;
	public Node(int key, int value) {
		this.key = key;
		this.value = value;
	}
}

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */


基于java LinkedHashMap:

import java.util.LinkedHashMap;
import java.util.Map;

public class LRUCache2 {
    private LinkedHashMap<Integer, Integer> map;
    private final int CAPACITY;
    public LRUCache2(int capacity) {
        CAPACITY = capacity;
        map = new LinkedHashMap<Integer, Integer>(capacity, 0.75f, true){
            protected boolean removeEldestEntry(Map.Entry eldest) {
                return size() > CAPACITY;
            }
        };
    }
    public int get(int key) {
    	if(!map.containsKey(key)) return -1;
    	else return map.get(key);
    }
    public void set(int key, int value) {
        map.put(key, value);
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值