"""
正规方程:sklearn.linear_model.LinearRegression(最小二乘法线性回归)更准确
使用于线性模型
梯度下降:sklearn.linear_model.SGDRegressor(最小二乘法线性回归)适合数据量大
适用于各种类型的模型
线性回归需要进行标准化处理
"""
# 导入波士顿房价数据集
from sklearn.datasets import load_boston
# 导入线性回归两种方法,正规方程和梯度下降
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge
# 分割数据集API
from sklearn.model_selection import train_test_split
# 导入标准化API
from sklearn.preprocessing import StandardScaler
# 均方误差
from sklearn.metrics import mean_squared_error
def price_predict():
"""
利用线性回归对波士顿房价进行预测
:return:
"""
# 获取数据
lb = load_boston()
# 分割数据集到训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25)
# print(y_train, y_test)
# 进行标准化处理,目标值同样需要进行标准化处理,实例化两个标准化API
std_x = StandardScaler()
x_train = std_x.fit_transform(x_train)
x_test = std_x.transform(x_test)
std_y = StandardScaler()
y_train = std_y.fit_transform(y_train.reshape(-1, 1)) # reshape(-1, 1)指将其转化为一列,行自动确定
y_test = std_y.transform(y_test.reshape(-1, 1)) # fit()方法要求第二个参数传递的是一维的
# 估计器预测
# 1.正规方程求解方程预测结果
lr = LinearRegression()
lr.fit(x_train, y_train)
print(lr.coef_)
# 预测测试集的房子价格
y_predict = lr.predict(x_test)
y_predict = std_y.inverse_transform(y_predict)
print("测试集的房子价格为: ", y_predict)
print("*"*50)
# 2.利用梯度下降进行线性回归预测
sgd = SGDRegressor()
sgd.fit(x_train, y_train)
print(sgd.coef_)
y_sgd_predict = sgd.predict(x_test)
y_sgd_predict = std_y.inverse_transform(y_sgd_predict)
print("测试集的房子价格为: ", y_predict)
# 3.岭回归进行房价预测
rd = Ridge(alpha=1.0)
rd.fit(x_train, y_train)
print(rd.coef_)
y_rd_predict = rd.predict(x_test)
y_rd_predict = std_y.inverse_transform(y_rd_predict)
print("正规方程的均方误差: ", mean_squared_error(std_y.inverse_transform(y_test), y_predict))
print("梯度下降的均方误差: ", mean_squared_error(std_y.inverse_transform(y_test), y_sgd_predict))
print("岭回归的均方误差: ", mean_squared_error(std_y.inverse_transform(y_test), y_rd_predict))
return None
if __name__ == '__main__':
price_predict()
线性回归岭回归预测波士顿房价
最新推荐文章于 2024-09-29 09:12:38 发布