Pandas的iloc与loc函数

Pandas库中有iloc和loc以及定位数据,抽取数据。但是方法一多也容易造成混淆。下面将一一来结合代码说清其中的区别。

1. iloc和loc的区别:
    iloc按行位置找数据。
    loc按索引位置找数据。

1)iloc
    主要使用数字来索引数据,而不能使用字符型的标签来索引数据。
    源码中的例子,挺形象的:

        >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4},
        ...           {'a': 100, 'b': 200, 'c': 300, 'd': 400},
        ...           {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }]
        >>> df = pd.DataFrame(mydict)
        >>> df
              a     b     c     d
        0     1     2     3     4
        1   100   200   300   400
        2  1000  2000  3000  4000

        **Indexing just the rows**

        With a scalar integer.

        >>> type(df.iloc[0])
        <class 'pandas.core.series.Series'>
        >>> df.iloc[0]
        a    1
        b    2
        c    3
        d    4
        Name: 0, dtype: int64

        With a list of integers.

        >>> df.iloc[[0]]
           a  b  c  d
        0  1  2  3  4
        >>> type(df.iloc[[0]])
        <class 'pandas.core.frame.DataFrame'>

2)loc
    则刚好相反,只能使用字符型标签来索引数据,不能使用数字来索引数据,不过有特殊情况,当数据框dataframe的行标签或者列标签为数字,loc就可以来其来索引。
    
    源码中的例子,挺形象的:
     

        >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
        ...      index=['cobra', 'viper', 'sidewinder'],
        ...      columns=['max_speed', 'shield'])
        >>> df
                    max_speed  shield
        cobra               1       2
        viper               4       5
        sidewinder          7       8

        Single label. Note this returns the row as a Series.

        >>> df.loc['viper']
        max_speed    4
        shield       5
        Name: viper, dtype: int64

        List of labels. Note using ``[[]]`` returns a DataFrame.

        >>> df.loc[['viper', 'sidewinder']]
                    max_speed  shield
        viper               4       5
        sidewinder          7       8

        Single label for row and column

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值