Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
- You may assume the interval's end point is always bigger than its start point.
- Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ] Output: 1 Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [ [1,2], [1,2], [1,2] ] Output: 2 Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [ [1,2], [2,3] ] Output: 0 Explanation: You don't need to remove any of the intervals since they're already non-overlapping.跟 452. Minimum Number of Arrows to Burst Balloons类似,只需要改变一下计数的方式,这里出现overlap就计数++。代码如下:
/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
public class Solution {
public int eraseOverlapIntervals(Interval[] intervals) {
if (intervals == null || intervals.length <= 1) {
return 0;
}
Arrays.sort(intervals, new Comparator<Interval>(){
@Override
public int compare(Interval interval1, Interval interval2) {
return interval1.start != interval2.start? interval1.start - interval2.start: interval1.end - interval2.end;
}
});
int end = intervals[0].end, overlap = 0;
for (int i = 1; i < intervals.length; i ++) {
Interval temp = intervals[i];
if (temp.start < end) {
overlap ++;
end = Math.min(end, temp.end);
} else {
end = temp.end;
}
}
return overlap;
}
}