435. Non-overlapping Intervals

Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.

Note:

  1. You may assume the interval's end point is always bigger than its start point.
  2. Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.

Example 1:

Input: [ [1,2], [2,3], [3,4], [1,3] ]

Output: 1

Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.

Example 2:

Input: [ [1,2], [1,2], [1,2] ]

Output: 2

Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.

Example 3:

Input: [ [1,2], [2,3] ]

Output: 0

Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
452. Minimum Number of Arrows to Burst Balloons类似,只需要改变一下计数的方式,这里出现overlap就计数++。代码如下:

/**
 * Definition for an interval.
 * public class Interval {
 *     int start;
 *     int end;
 *     Interval() { start = 0; end = 0; }
 *     Interval(int s, int e) { start = s; end = e; }
 * }
 */
public class Solution {
    public int eraseOverlapIntervals(Interval[] intervals) {
        if (intervals == null || intervals.length <= 1) {
            return 0;
        }
        Arrays.sort(intervals, new Comparator<Interval>(){
            @Override
            public int compare(Interval interval1, Interval interval2) {
                return interval1.start != interval2.start? interval1.start - interval2.start: interval1.end - interval2.end;
            }
        });
        int end = intervals[0].end, overlap = 0;
        for (int i = 1; i < intervals.length; i ++) {
            Interval temp = intervals[i];
            if (temp.start < end) {
                overlap ++;
                end = Math.min(end, temp.end);
            } else {
                end = temp.end;
            }
        }
        return overlap;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值