给你一个整数数组 nums 和一个整数 k ,找出三个长度为 k 、互不重叠、且全部数字和(3 * k 项)最大的子数组,并返回这三个子数组。
以下标的数组形式返回结果,数组中的每一项分别指示每个子数组的起始位置(下标从 0 开始)。如果有多个结果,返回字典序最小的一个。
示例 1:
输入:nums = [1,2,1,2,6,7,5,1], k = 2
输出:[0,3,5]
解释:子数组 [1, 2], [2, 6], [7, 5] 对应的起始下标为 [0, 3, 5]。
也可以取 [2, 1], 但是结果 [1, 3, 5] 在字典序上更大。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-sum-of-3-non-overlapping-subarrays
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
动态规划
dp[i][j] 为数组前j个元素中 i个长度为k的子数组的最大和
class Solution:
def maxSumOfThreeSubarrays(self, nums: List[int], k: int) -> List[int]:
dp = [[0] * (1 + len(nums)) for i in range(4)]
sums = [0] * (len(nums) + 1)
for i in range(0, len(nums)):
sums[i + 1] = (nums[i] + sums[i])
for i in range(1, 4):
for j in range(k, len(nums) + 1):
dp[i][j] = max(dp[i][j-1], dp[i-1][j-k] + sums[j] - sums[j-k])
res = [0] * 3
i = 3
j = len(nums)
while i > 0 and j > 0:
if dp[i][j] == dp[i][j-1]:
j -= 1
continue
i -= 1
if i < 0:
break
res[i] = j - k
j -= k
return res