leetcode-689. 三个无重叠子数组的最大和

给你一个整数数组 nums 和一个整数 k ,找出三个长度为 k 、互不重叠、且全部数字和(3 * k 项)最大的子数组,并返回这三个子数组。

以下标的数组形式返回结果,数组中的每一项分别指示每个子数组的起始位置(下标从 0 开始)。如果有多个结果,返回字典序最小的一个。

 

示例 1:

输入:nums = [1,2,1,2,6,7,5,1], k = 2
输出:[0,3,5]
解释:子数组 [1, 2], [2, 6], [7, 5] 对应的起始下标为 [0, 3, 5]。
也可以取 [2, 1], 但是结果 [1, 3, 5] 在字典序上更大。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-sum-of-3-non-overlapping-subarrays
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

动态规划

dp[i][j] 为数组前j个元素中 i个长度为k的子数组的最大和

class Solution:
    def maxSumOfThreeSubarrays(self, nums: List[int], k: int) -> List[int]:
        dp = [[0] * (1 + len(nums)) for i in range(4)]

        sums = [0] * (len(nums) + 1)
        for i in range(0, len(nums)):
            sums[i + 1] = (nums[i] + sums[i])

        for i in range(1, 4):
            for j in range(k, len(nums) + 1):
                dp[i][j] = max(dp[i][j-1], dp[i-1][j-k] + sums[j] - sums[j-k])

        res = [0] * 3
        i = 3
        j = len(nums)
        while i > 0 and j > 0:
            if dp[i][j] == dp[i][j-1]:
                j -= 1
                continue
            i -= 1
            if i < 0:
                break
            res[i] = j - k
            j -= k

        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值