大模型微调训练营-毕业总结
在极客时间 AI 大模型微调训练营学习一学期下来,目前就要结束了,现对于整个学期做个总结如下:
训练营地址:https://u.geekbang.org/subject/finetuning
完成大模型微调训练营第0期的学习,拿到毕业证书啦!!!回味无穷,没有辜负购课时候的目标🎯,工作中都用上了,但是还得继续不断消化实践,推荐~
补充秀个证书~
1、目前在什么岗位做什么?
目前在做
1、AI业务场景落地
2、提效AI开发的产品平台。
2、为什么选择报名学习此训练营?
-
对AI趋势预判、极大的感兴趣
-
希望通过训练营入门AI,掌握概念、操作,能够在学完之后可以自行继续深入研究。
-
提高对AI大模型微调的认知和实践,个人长期投入以及公司项目需要。
事实证明,以上目标均已达到。
3、课程讲的如何?这个课程你的收获是什么?
课程讲的由浅入深,更多的都是理论性知识、论文相关的技术原理性讲解。
辅助以一些google colab的notebook操作手册直接上手实践,学中做,做中学。
收获有很多:
通过这门课程,我深刻理解了AI技术发展的四轮浪潮,包括从弱人工智能到机器学习、深度学习乃至大语言模型的演进,以及这些技术在全球范围内如何引发高校共识、硅谷创新乃至中美博弈。特别是,我掌握了如何利用AI大模型助力个体和小团队的实战能力,这对我未来的学习和工作都有着不可估量的价值。
我学会了大模型的核心技术,包括提示工程、AI智能体、大模型微调和预训练技术。我还深入了解了统计语言模型、神经网络语言模型、基于Transformer的大语言模型、注意力机制等先进技术,这让我能够更深入地理解大模型背后的原理和架构。
通过Hugging Face Transformers的快速入门,我不仅掌握了Transformers库的核心功能,还通过实战练习掌握了如何使用Pipelines、Tokenizer和Models等工具,以及如何在Google Colab等平台上搭建GPU开发环境进行模型训练和微调。我还学习了如何处理数据集、进行模型训练评估,并且通过实战项目深化了对Text Classification和Question Answering任务的理解。
我对大模型的高效微调(PEFT)技术和低秩适配(LoRA)技术有了全面的了解,包括Adapter Tuning、Prefix Tuning、Prompt Tuning等技术的应用,这些都极大地提升了我的技术实践能力。
我还通过LangChain学习了大模型应用开发框架的基础知识,理解了大模型抽象、最佳实践和数据处理流等概念,为我未来开发和部署AI应用奠定了坚实的基础。
此外,我通过实战项目深入了解了智谱AI GLM大模型家族、Meta LLaMA大模型技术、ChatGPT的训练核心技术、基于人