超越影像——RSNA 2016参展随感 (一)

*推荐搜索关注微信公众号:医影杂记


  芝加哥,全美人口第三大城市,整座城市坐落于紧靠歇根湖的曲线型湖岸,终年多风,又被成为Windy City”风城。而对于全球放射学的研究人员和从业人员来讲,与风城相识和结缘,则是由于每年11月在这里举办的RSNARadiological Society of North America)年会。

     非常有幸,今年能够有机会前往风城,参加这场放射学盛会。整个参会的过程,伴随着新奇的体验和意外的收获,同时也触发颇多感触。这里希望能用一些随意和简单的文字,把这些感触记录下来,以免Gone with the Wind,随风而逝算作一篇参展随感吧

    2016年已经是RSNA的第102届年会,会议的主题是“Beyond Imaging”。这一主题似乎是给所有与会人员和厂商出了一道开放式的问答题。没有范围限制,也没有标准答案,完全是让大家去自由发挥,去想象(Imagine)。这一主题的设立也反映出,从1845年伦琴发现X光射线,放射学从第一张X光影像起源,经历了一百多年的发展,现在已经是必须要求超越影像来取得新的飞跃


   围绕Beyond Imaging这一主题研究学者和影像厂商在今年的展会中提出见解推出产品来给出自己的回答。百家争鸣,各展所长的回答之中,有两个方向是今年的最热主题:人工智能和3D打印。这两个主题热度不分伯仲,人工智能略胜一筹。但放射医生对二者的态度却有所差异。对于人工智能,放射医生有肯定,也有质疑;而对于3D打印,放射医生则几乎是一致性的肯定和拥抱。此外,作为一名医疗影像软件的从业人员,也想聊一下影像软件,尤其是PACS系统,在今年展会上的新发展和动态。

    先说人工智能,它的热度在本次年会堪称排名第一。由于深度学习理论的发展和在应用领域的突破,加上几大国际IT巨头的介入,“人工智能,机器学习,神经网络,深度学习”这些以前基本只出现在高校研究生教材和学术期刊杂志中的理论名词,已经变成热点词汇,出现在网络信息和各厂商宣传手册中,并且进入了各个行业领域,包括放射学领域。这些词汇也是本届RSNA上的最热词汇。

    

  

    本届最引人注目的一个展示就是IBM推出的Eyes of Watson在影像诊断领域的演示视频在这个短片中,Watson被用于基于CTA主动脉夹层和基于钼靶影像的乳腺疾病辅助诊断需要说明的是,Watson不仅使用了影像同时还使用了相关病历信息进行分析IBM的演示视频充满未来科技感,具有很强的视觉冲击力。在主动脉夹层的演示视频中,Watson不仅诊断出主动脉夹层,而且还完成了主动脉的分割和夹层区域的标记,给人感觉非常的强大,真的像是一个有经验的放射医生在进行工作。但从另一个角度看,整个视频采用的完全是商业化广告的宣传路线,突出展示了Watson的智能,但却没有给出支撑这一智能的理论依据,也没有给出Watson智能准确性的验证。这使得大家在观看视频之后,也产生了一系列的疑问和质疑。如同IBM所介绍的,Watson目前仍然是一款原型产品,类似于车展中的原型车,展现的是未来的可能性,Watson距离临床应用仍然有相当距离。

    虽然没有Watson那样的引人注目,但一些医疗影像辅助诊断领域的专业厂商在人工智能临床应用领域,已经走在了Watson的前面。专业计算机辅助诊断软件公司iCAD,一直在进行基于深度学习的人工智能开发,他们的乳腺CAD产品和CT虚拟结肠镜CAD产品,已经获得了FDA批准,可以用于临床。但是这两个注册产品都是在2013年获得批准的,iCAD也只是说他们使用了人工智能算法,但没有明确说是否使用了深度学习。从注册批准的时间来看,不太可能使用深度学习算法。飞利浦则在进行基于深度学习的X光影像肺结核CAD研发,并且已经在申请FDA认证。

    对于人工智能,几乎所有的放射医生和专家都在关注。但有人肯定和支持人工智能,也有人质疑和拒绝人工智能。人工智能领域目前最活跃的是深度学习方法,但放射医生对深度学习方法存在一个普遍的质疑。深度学习能够给出关于疾病的分析结果,但目前却不能给出关于结果的推理说明。这类似于,深度学习在回答问题时,只是给出答案,却不说明为什么。这是源于,理论上,深度学习模型的解题过程依靠的是分散存储在数百甚至上千个神经元中的调节参数。目前,还没有理论能够直观地解释这些参数是如何影响和决定分析结果的。还有一些放射医生拒绝人工智能,则是担心人工智能的崛起,将使得放射医生被机器取代,或者导致放射医生被边缘化。然而,Keith J. Dreyer, DO, PhD vice chairman of Radiology Computer and Information Siences at Massachusetts General Hospital)在他的主题为“When Machines Think: Radiologys Next Frontier”的大会报告中指出,人工智能的快速发展并不会把放射医生边缘化,相反,人工智能将进一步强化放射医生的专业性,并且将使放射医生在即将到来的精准医学大潮中处于领导地位。他同时也指出,人工智能还有很长的路要走,预测要到2029年,才能够在临床诊疗中取得超出医生的表现。

    肯定也好,质疑也好,本届RSNA上聚焦介绍和讨论人工智能的主题报告超过13场,这还不包括为数众多的以海报形式展出的科技论文。放射学界对人工智能的关注是毋庸置疑的。伴随着深度学习方法的突破,人工智能以一种跃跃欲试的姿态进入了人们生活的各个领域。我们也将以拭目以待的态度,期待看到人工智能将给放射学带来怎样的冲击。

(待续)





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值