组合数学——排列组合经典模型

组合数学——排列组合经典模型

球盒模型

n n n个不同的球放入 m m m个相同的盒子里面,盒子不允许为空

这和第二类斯特林数的定义相同,答案为 { n m } {n \brace m} {mn}

n n n个不同的球放入 m m m个不同的盒子里面,盒子不允许为空

通过第二类斯特林数计算出 n n n个不同的球放入 m m m相同的盒子里面,盒子不允许为空的方案数为 { n m } {n \brace m} {mn},之后再对 m m m个盒子进行排列即可,答案为 { n m } × m ! {n \brace m} \times m! {mn}×m!

n n n个不同的球放入 m m m个相同的盒子里面,盒子允许为空

枚举空盒数量即可,答案为:

∑ i = 0 m − 1 { n m − i } \sum_{i=0}^{m-1}{n \brace m-i} i=0m1{min}

定义为Bell数。

n n n个不同的球放入 m m m个不同的盒子里面,盒子允许为空

配对问题,答案为:

m n m^n mn

n n n个相同的球放入 m m m个不同的盒子里面,盒子不允许为空

经典的隔板法,答案为:

( n − 1 m − 1 ) \binom{n-1}{m-1} (m1n1)

n n n个相同的球放入 m m m个不同的盒子里面,盒子允许为空

我们先放入m个相同的球,现在球的数量为 n + m n+m n+m个,我们将这 n + m n+m n+m个球放入 m m m个不同的盒子里面,盒子不允许为空,最后再在每个盒子中抽走一个球,答案为:

( n + m − 1 m − 1 ) \binom{n + m -1}{m-1} (m1n+m1)

或者,每一种情况对应一种仅由"N"和"P"组成的操作序列。我们一开始站在第一个盒子处,遇到"P"则在当前盒子放进一个球,遇到"N"则向右走一个箱子。这个序列由 m − 1 m-1 m1个"N"和 n n n个"P"组成。

n n n个相同的球放入 m m m个相同的盒子里面,盒子允许为空

我们考虑递归,当 m > n m > n m>n的时候,必然会有 m − n m-n mn个盒子为空,所以将其舍弃,为 p ( n , n ) p(n,n) p(n,n)。其他情况,考虑划分成两种情况,第一种 m m m个盒子全部非空,那么现将 m m m个箱子每一个都放进一个球,方案数为 p ( n − m , m ) p(n-m,m) p(nm,m)。第二种有至少一个盒子是空的,那么方案数为 p ( n , m − 1 ) p(n,m-1) p(n,m1)

int partition(int n, int m)
{
    if (n == 0)
        return 1;
    if (m == 0)
        return 0;
    if (m > n)
        return partition(n, n);
    else
        return partition(n, m - 1) + partition(n - m, m);
}

n n n个相同的球放入 m m m个相同的盒子里面,盒子不允许为空

先将 m m m个盒子每一个放入一个小球,保证非空,然后转为为上一个问题,答案为 p ( n − m , m ) p(n-m,m) p(nm,m)

n n n个相同的球放入 m m m个不同的盒子里面,每个盒子里面最多有一个小球,并且非空的盒子不能相邻

考虑现将小球放入盒子中,之后再每个盒子中插入一个空盒子,还剩下 m − n + 1 m-n+1 mn+1个盒子,考虑将这 m − n + 1 m-n+1 mn+1个盒子,可以用空放入 n + 1 n+1 n+1个位置。答案为 ( n − m + 1 n − 2 m + 1 ) \binom{n-m+1}{n-2m+1} (n2m+1nm+1)

划分模型

划分模型指 n n n个不同的元素,按照 [ n 1 , n 2 , … , n k ] [n_1,n_2,\ldots,n_k] [n1,n2,,nk]进行划分成 k k k组,其中 ∑ n i = n \sum{n_i} = n ni=n,问有多少种划分方式。

我们先按照 n i n_i ni的大小相同的分到一个集合中,那么 S S S集合就是多值集合 [ n 1 , n 2 , … , n k ] [n_1,n_2,\ldots,n_k] [n1,n2,,nk]的一个划分。

那么答案为:

ans = ∏ i = 1 k ( n − ∑ j = 1 k − 1 n i n k ) ∏ s i ∈ S ∣ s i ∣ ! \text{ans} = \frac{\prod_{i = 1}^k \binom{n - \sum_{j = 1}^{k - 1}n_i}{n_k}}{ \prod_{s_i \in S} |s_i|!} ans=siSsi!i=1k(nknj=1k1ni)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值