C---已知正整数n是两个不同的质数的乘积,试求出较大的那个质数。

补充数学知识:n为两个质数之积,这说明只要找到一个数能够被n整除,这个数一定是质数

参考来自

C---已知正整数n是两个不同的质数的乘积,试求出较大的那个质数。_已知正整数n是两个不同的质数的乘积,试求出较大的那个质数-CSDN博客

我觉得他写的很奇怪,这是作者写的代码

就有点无语好吧,加了很多莫名其妙的东西,所以我就改了一下下

#include <stdio.h>
#include <math.h>

int main()
{
    int n, i, max;
    scanf("%d", &n);
    for(i=2; i<sqrt(n); i++)
    {
        if(n % i == 0)
        {
            max = n / i;
            break;
        }
    }
    printf("%d", max);
    return 0;
}

因为2为最小的质数,所以从2开始找。这里其实不用通过平方sqrt减小运算次数,oj题一定有答案,break直接跳出就行了。等遇到较小的质数,然后与n相除,得到另一个较大质数。

### 回答1: 根据唯一分解定理,正整数n可以唯一分解为若干个质数乘积。因为n是两个不同质数乘积,所以n的质因数分解式为n=p*q,其中p和q是两个不同质数。 由于p和q都是质数,所以它们中较大的那个一定比较小的那个大。因此,我们只需要比较p和q的大小即可确定较大的那个质数。 综上所述,较大的那个质数是max(p,q)。 ### 回答2: 首先我们需要了解质数的概念。质数是指除了1和它本身之外,不能被其他正整数整除的正整数,比如2、3、5、7、11等等。因为两个质数相乘得到的结果也是正整数,所以我们可以推断n必然是一个由两个质数相乘得来的正整数。 我们来考虑一个例子,如果n=15,它可以表示为n=3×5,3和5都是质数,那么我们就可以得15的较大质数是5。 我们可以举一些其他的例子来帮助理解。如果n=77,它可以表示为n=7×11,7和11都是质数,因此它的较大质数是11;如果n=91,它可以表示为n=7×13,7和13都是质数,因此它的较大质数是13。 综上所述,如果已知正整数n是两个不同质数乘积,我们可以通过将n分解成两个质数相乘的形式,然后比较这两个质数的大小,来求n的较大质数。 ### 回答3: 首先,我们需要了解质数的定义。质数是只能被1和自身整除的正整数。另外,我们知道两个质数相乘的结果也是一个正整数。 假设这两个质数分别是p和q(p≠q),那么根据题目所给的条件,我们可以得到n=p×q。 为了求两个质数较大的那个,我们需要比较p和q的大小。下面提供两种方法: 方法一:从小到大枚举质数 由于p和q都是质数,所以从小到大枚举正整数,找到p和q的值即可。具体步骤如下: 1. 从2开始,逐个枚举正整数,如果能够整除n,那么就可以得到一个质数因子p。 2. 则另一个质数因子q=n/p。 3. 比较p和q的大小,较大的那个即为所求。 方法二:从大到小枚举质数 由于p和q都是质数,根据质数的特性,p和q必然大于等于根号n。所以,我们可以从大到小枚举p的值,找到能够整除n的最大的质数p,即可求q=n/p。 具体步骤如下: 1. 从根号n开始,逐个枚举正整数,如果能够整除n,那么就可以得到一个质数因子p。 2. 则另一个质数因子q=n/p。 3. 比较p和q的大小,较大的那个即为所求。 综上所述,我们可以使用枚举质数的方法求两个质数较大的那个。方法一比较简单,但是需要枚举的次数较多。方法二效率更高,但是需要注意从根号n开始枚举。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值