动态dp详解

给大家介绍一篇写得很好的博客

【题目描述】
给定一棵n个点的树,点带点权。
有m次操作,每次操作给定x,y,表示修改点x的权值为y。
你需要在每次操作之后求出这棵树的最大权独立集的权值大小。
1<=n,m<=10^5

这一道题,其实就是在没有直接上司的舞会这一题中加上一个修改操作,难度也从一个普通的黄题直接升到黑题
如果是像原来那样的暴力,在树退化到链以后会被卡到O(N^2)
再想想,有什么树形结构每次修改+查找仅有log级的复杂度呢
如果是动态树的话,总时间复杂度是O(NlogN),但是常数过大
然后就是树链剖分了。
先看一下最传统的dp公式
f [ u ] [ 0 ] f[u][0] f[u][0]表示i不放的最大值, f [ i ] [ 1 ] f[i][1] f[i][1]表示i放的最大值
很容易的出结论(其中G是u儿子的集合)
f [ u ] [ 0 ] = ∑ v ∈ G m a x ( f [ v ] [ 0 ] , f [ v ] [ 1 ] ) f[u][0]=\sum_{v∈G}max(f[v][0],f[v][1]) f[u][0]=vGmax(f[v][0],f[v][1])
f [ u ] [ 1 ] = ∑ v ∈ G f [ v ] [ 0 ] f[u][1]=\sum_{v∈G}f[v][0] f[u][1]=vGf[v][0]
这样就很难受了,因为每当一个f改变,必定会影响到他的父亲,导致腰一个个的改,所以不能直接在线段树上进行修改
那这要怎么办呢?
经过思考,可以想到,每一个f的改变(先不管重链头),仅仅只是影响到他所在的重链,并没有这条重链周边的重链
所以我们尝试将f分成连个部分分别是所在的重链和周边的重链
g [ u ] [ 0 ] g[u][0] g[u][0]表示除去重儿子的部分i不放的最大值
  g [ u ] [ 1 ] g[u][1] g[u][1]表示除去重儿子的部分i放的最大值
那么f的转移方程可以改变为
f [ u ] [ 0 ] = g [ u ] [ 0 ] + m a x ( f [ s o n [ u ] ] [ 0 ] , f [ s o n [ u ] ] [ 1 ] ) f[u][0]=g[u][0]+max(f[son[u]][0],f[son[u]][1]) f[u][0]=g[u][0]+max(f[son[u]][0],f[son[u]][1])
f [ u ] [ 1 ] = g [ u ] [ 1 ] + f [ s o n [ u ] ] [ 0 ] f[u][1]=g[u][1]+f[son[u]][0] f[u][1]=g[u][1]+f[son[u]][0]
可这样还不行啊,怎么办?
于是就有某位大佬将矩阵乘法改写到可以维护f
原来的矩阵乘法是这样的:
C [ i ] [ j ] = ∑ k = 1 n A [ i ] [ k ] ∗ B [ k ] [ j ] C[i][j]=\sum\limits_{k=1}^{n}A[i][k]*B[k][j] C[i][j]=k=1nA[i][k]B[k][j]
而修改完以后的矩阵乘法就变成了
C [ i ] [ j ] = max ⁡ k = 1 n ( A [ i ] [ k ] + B [ k ] [ j ] ) C[i][j]=\max\limits_{k=1}^{n}(A[i][k]+B[k][j]) C[i][j]=k=1maxn(A[i][k]+B[k][j])
原来的求和变成求最大值,原来的乘法变成了加法
这样以后,我们可以构造矩阵
[ g [ i ] [ 0 ] g [ i ] [ 0 ] g [ i ] [ 1 ] 0 ] ∗ [ f [ s o n [ i ] ] [ 0 ] f [ s o n [ i ] ] [ 1 ] ] = [ f [ i ] [ 0 ] f [ i ] [ 1 ] ] \begin{bmatrix} g[i][0]&g[i][0]\\ g[i][1]&0 \end{bmatrix} * \begin{bmatrix} f[son[i]][0]\\ f[son[i]][1] \end{bmatrix}=\begin{bmatrix} f[i][0]\\ f[i][1] \end{bmatrix} [g[i][0]g[i][1]g[i][0]0][f[son[i]][0]f[son[i]][1]]=[f[i][0]f[i][1]]
大家可以自己验证一下~~
说道这里,大家或许还是懵的,就像我当时一样
那么我们可以继续将这个式子分解,变为
[ g [ i ] [ 0 ] g [ i ] [ 0 ] g [ i ] [ 1 ] 0 ] ∗ [ g [ s o n [ i ] ] [ 0 ] g [ s o n [ i ] ] [ 0 ] g [ s o n [ i ] ] [ 1 ] 0 ] ∗ [ f [ s o n [ s o n [ i ] ] ] [ 0 ] f [ s o n [ s o n [ i ] ] ] [ 1 ] ] = [ f [ i ] [ 0 ] f [ i ] [ 1 ] ] \begin{bmatrix} g[i][0]&g[i][0]\\ g[i][1]&0 \end{bmatrix} * \begin{bmatrix} g[son[i]][0]&g[son[i]][0]\\ g[son[i]][1]&0 \end{bmatrix} * \begin{bmatrix} f[son[son[i]]][0]\\ f[son[son[i]]][1] \end{bmatrix}=\begin{bmatrix} f[i][0]\\ f[i][1] \end{bmatrix} [g[i][0]g[i][1]g[i][0]0][g[son[i]][0]g[son[i]][1]g[son[i]][0]0][f[son[son[i]]][0]f[son[son[i]]][1]]=[f[i][0]f[i][1]]
如果是这样的话,大家应该明白了
这样一直往下分,就可以直达叶子节点
所以在同一条重链中,我们可以用O(logN)的时间求出top的值
像这样一直到根节点,每次就是 O ( l o g 2 n ) O(log^2 n) O(log2n)
总结一下,我们用树剖,线段树上每一个节点都构造一个矩阵,记录矩阵之积
不过要注意的是,每次修改到一条重链的头,都会影响到下一条重链,所以记得修改
参考代码

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<queue>
#define il inline
#define dg isdigit
#define gc getchar()
using namespace std;
il int read(){
	int x=0,f=0;char s=gc;
	while(!dg(s))f|=s=='-',s=gc;
	while( dg(s))x=x*10+s-48,s=gc;
	return f?-x:x;
}
const int N=1e5+10;
int n,m,a[N];
struct edge{
	int v,nxt;
}e[N<<1];int ecnt,last[N];
il void add(int u,int v){
	e[++ecnt]=(edge){v,last[u]};
	e[++ecnt]=(edge){u,last[v]};
	last[u]=ecnt-1,last[v]=ecnt;
}
int fa[N],son[N],size[N],top[N];
int z,idx[N],pos[N],ed[N];
int f[N][2];
struct matrix{//矩阵乘法 
	int g[2][2];
	matrix(){
		memset(g,0,sizeof(g));
	}
	matrix operator*(const matrix &b)const{ 
		matrix c;int i,j,k;//重载"*"运算符 
		for(i=0;i<2;i++)
		for(j=0;j<2;j++)
		for(k=0;k<2;k++)
			c.g[i][j]=max(c.g[i][j],g[i][k]+b.g[k][j]);
		return c;
	}
}val[N],tr[N<<2];//val记录每一个点的信息,tr记录线段树上节点的信息 
int q[N],l,r;
void init(){//这里本来可以用三个dfs,不过听说这样会更快,而且代码更短 
	int u,v,i;
	for(q[1]=1,l=1,r=1;l<=r;l++)//按深度给每一个点排序,并且将这些点放入q 
	for(u=q[l],i=last[u];i;i=e[i].nxt)
		if((v=e[i].v)!=fa[u])
		fa[v]=u,q[++r]=v;
	for(r=n;r;r--){//记录子树和重儿子 
		size[u=q[r]]++;
		size[fa[u]]+=size[u];
		if(size[u]>size[son[fa[u]]])
			son[fa[u]]=u;
	}
	for(l=1;l<=n;l++)//制造重链 
	if(!top[u=q[l]]){
		for(v=u;v;v=son[v])
		top[v]=u,idx[pos[v]=++z]=v;
		ed[u]=z;
	}
	for(r=n;r;r--){//求出f的值 
		u=q[r];f[u][1]=a[u];
		for(i=last[u];i;i=e[i].nxt)
		if((v=e[i].v)!=fa[u]){
			f[u][0]+=max(f[v][0],f[v][1]);
			f[u][1]+=f[v][0];
		}
	}
}
void build(int now,int l,int r){//构造线段树 
	if(l==r){
		//注意一下,这里now仅仅指的是线段树上的叶子节点 
		//在真是的树上他并不一定是叶子节点 
		int g0=0,g1=a[idx[l]];
		int i,u=idx[l],v;//求出g 
		for(i=last[u];i;i=e[i].nxt)
		if((v=e[i].v)!=fa[u]&&v!=son[u])
			g0+=max(f[v][0],f[v][1]),g1+=f[v][0];
		tr[now].g[0][0]=tr[now].g[0][1]=g0;//构造矩阵 
		tr[now].g[1][0]=g1;val[l]=tr[now];
		return ;
	}
	int mid=(l+r)>>1;
	build(now<<1,l,mid);
	build(now<<1|1,mid+1,r);
	tr[now]=tr[now<<1]*tr[now<<1|1];//维护 
}
void change(int now,int l,int r,int p){//修改操作 
	if(l==r){tr[now]=val[l];return ;}
	int mid=(l+r)>>1;
	if(p<=mid)change(now<<1,l,mid,p);
	else change(now<<1|1,mid+1,r,p);
	tr[now]=tr[now<<1]*tr[now<<1|1];
}
matrix query(int now,int l,int r,int x,int y){//查询操作 
	if(x<=l&&r<=y)return tr[now];
	int mid=(l+r)>>1;
	if(y<=mid)return query(now<<1,l,mid,x,y);
	if(mid<x)return query(now<<1|1,mid+1,r,x,y);
	return query(now<<1,l,mid,x,y)*query(now<<1|1,mid+1,r,x,y);
}
matrix ask(int u){//询问 
	return query(1,1,n,pos[top[u]],ed[top[u]]);
}
il void solve(int u,int x){
	val[pos[u]].g[1][0]+=x-a[u];//先修改节点u 
	a[u]=x;matrix od,nw;
	//因为会影响到下一条重链
	//所以我们要记录原来重链头和更新以后的重链头 
	while(u){
		od=ask(top[u]);//记录原来的 
		change(1,1,n,pos[u]);//更新 
		nw=ask(top[u]);//记录现在的 
		u=fa[top[u]];//跳到下一条重链上 
		//重新构造矩阵 
		val[pos[u]].g[0][0]+=max(nw.g[0][0],nw.g[1][0])
						    -max(od.g[0][0],od.g[1][0]);
		val[pos[u]].g[0][1]=val[pos[u]].g[0][0];
		val[pos[u]].g[1][0]+=nw.g[0][0]-od.g[0][0];
	}
}

int main(){ 
	n=read(),m=read();
	int i,u,v,x;
	for(i=1;i<=n;i++)
		a[i]=read();
	for(i=1;i<n;i++)
		u=read(),v=read(),add(u,v);
	init();build(1,1,n);matrix t;
	while(m--){
		u=read(),x=read();
		solve(u,x);t=ask(1);
		printf("%d\n",max(t.g[0][0],t.g[1][0]));
	}
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值