二项式定理的各种证明

二项式定理

( a + b ) n = ∑ k = 0 n C n k a k b n − k (a+b)^n=\sum_{k=0}^n C_n^ka^kb^{n-k} (a+b)n=k=0nCnkakbnk
证明:
数学归纳法,当n=1是, ( a + b ) 1 = C n k a k b n − k = a + b (a+b)^1=C_{n}^ka^kb^{n-k}=a+b (a+b)1=Cnkakbnk=a+b成立
假设当n=m是命题成立, n = m + 1 n=m+1 n</

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
负二项分布是一种离散概率分布,描述了在一系列独立的 Bernoulli 试验中,成功次数为固定值 r 时,失败次数的概率分布。设 X 是负二项分布,成功概率为 p,失败概率为 1-p,则 X 的概率质量函数为: P(X=k)=C(k-1,r-1) * p^r * (1-p)^(k-r) 其中,C(k-1,r-1)是组合数,表示在 k-1 个 Bernoulli 试验中,成功了 r-1 次的方式数。 首先,我们来证明期望 E(X) = r/p。根据期望的定义,有: E(X) = ∑(k=1到∞) k * P(X=k) = ∑(k=r到∞) k * C(k-1,r-1) * p^r * (1-p)^(k-r) = r * ∑(k=r到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) + ∑(k=r+1到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) 对于第一项,我们可以将 C(k-1,r-1) 展开为 (k-1)!/[(r-1)!(k-r)!],得到: ∑(k=r到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) = ∑(k=r到∞) [(k-1)!/[(r-1)!(k-r)!]] * p^r * (1-p)^(k-r) = r * ∑(k=r到∞) [(k-1)!/[(r-1)!(k-r+1)!]] * p^r * (1-p)^(k-r+1) = r * p * ∑(k=r-1到∞) [(k)!/[(r-1)!(k-r+1)!]] * p^(r-1) * (1-p)^(k-r+1) = r * p * ∑(k=r-1到∞) C(k-1,r-2) * p^(r-1) * (1-p)^(k-r+1) = r * p * 1 (根据二项式定理,∑(k=0到∞) C(k,r-1) * x^k = (1+x)^r-1) = r/p 对于第二项,我们可以将 C(k-1,r-1) 展开为 (k-1)!/[(r-1)!(k-r)!],得到: ∑(k=r+1到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) = ∑(k=r+1到∞) [(k-1)!/[(r-1)!(k-r)!]] * p^r * (1-p)^(k-r) = p^r * (1-p) * ∑(k=r到∞) [(k)!/[(r-1)!(k-r)!]] * p^(r-1) * (1-p)^(k-r) = p^r * (1-p) * ∑(k=r到∞) C(k,r-1) * p^(r-1) * (1-p)^(k-r) = r * (1-p)/p 因此,E(X) = r/p + r * (1-p)/p = r/p。 接下来,我们来证明方差 Var(X) = r(1-p)/p^2。根据方差的定义,有: Var(X) = E(X^2) - [E(X)]^2 = ∑(k=1到∞) k^2 * P(X=k) - [r/p]^2 = ∑(k=r到∞) k^2 * C(k-1,r-1) * p^r * (1-p)^(k-r) - [r/p]^2 对于第一项,我们可以将 k^2 * C(k-1,r-1) 展开为 [(k-1)!/(r-1)!(k-r)!] * k * [(k-1)+(r-1)],得到: ∑(k=r到∞) k^2 * C(k-1,r-1) * p^r * (1-p)^(k-r) = ∑(k=r到∞) [(k-1)!/(r-1)!(k-r)!] * k * [(k-1)+(r-1)] * p^r * (1-p)^(k-r) = r * p * ∑(k=r到∞) [(k)!/(r-1)!(k-r+1)!] * [(k-1)+(r-1)] * p^(r-1) * (1-p)^(k-r+1) + r^2 * ∑(k=r+1到∞) [(k-1)!/(r-1)!(k-r)!] * p^r * (1-p)^(k-r) = r * p * ∑(k=r-1到∞) [(k)!/(r-1)!(k-r+1)!] * k * p^(r-1) * (1-p)^(k-r+1) + r^2 * ∑(k=r到∞) [(k-1)!/(r-1)!(k-r)!] * p^r * (1-p)^(k-r) = r * p * ∑(k=r-1到∞) C(k-1,r-2) * (k-r+1+r-1) * p^(r-1) * (1-p)^(k-r+1) + r^2 * ∑(k=r到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) = r * p * ∑(k=r-1到∞) [C(k,r-1)-C(k-1,r-2)] * k * p^(r-1) * (1-p)^(k-r+1) + r^2 * ∑(k=r到∞) C(k-1,r-1) * p^r * (1-p)^(k-r) = r * p * [r*2^(r-2)*(1-p)^(r-1) + ∑(k=r到∞) C(k-1,r-1) * k * p^(r-1) * (1-p)^(k-r+1)] + r^2 * [1-p]/p 对于第二项,我们可以利用 E(X) = r/p,得到: [r/p]^2 = r^2/p^2 综上所述,有: Var(X) = r/p * [r*2^(r-2)*(1-p)^(r-1) + ∑(k=r到∞) C(k-1,r-1) * k * p^(r-1) * (1-p)^(k-r+1)] + r^2 * [1-p]/p - r^2/p^2 = r(1-p)/p^2

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值