二项式定理 ( a + b ) n = ∑ k = 0 n C n k a k b n − k (a+b)^n=\sum_{k=0}^n C_n^ka^kb^{n-k} (a+b)n=k=0∑nCnkakbn−k 证明: 数学归纳法,当n=1是, ( a + b ) 1 = C n k a k b n − k = a + b (a+b)^1=C_{n}^ka^kb^{n-k}=a+b (a+b)1=Cnkakbn−k=a+b成立 假设当n=m是命题成立, n = m + 1 n=m+1 n