如何求1^k+2^k+...+n^k

今天做了一道题,要求连续幂( n < = 1 0 9 n<=10^9 n<=109)
然后我就学了一下这个做法。
我们可以先从一个简单的入手,也就是k=2时,那么就有
1 2 + 2 2 + . . . + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 1^2+2^2+...+n^2=\frac{n(n+1)(2n+1)}{6} 12+22+...+n2=6n(n+1)(2n+1)
其中有一种证明, 设 T n = ( n + 1 ) 3 − n 3 T_n=(n+1)^3-n^3 Tn=(n+1)3n3,则有 T n = 3 n 2 + 3 n + 1 Tn=3n^2+3n+1 Tn=3n2+3n+1

然后有: ∑ i = 1 n T i = ( n + 1 ) 3 − n 3 + n 3 − ( n − 1 ) 3 . . . = ( n + 1 ) 3 − 1 \sum_{i=1}^nTi=(n+1)^3-n^3+n^3-(n-1)^3...=(n+1)^3-1 i=1nTi=(n+1)3n3+n3(n1)3...=(n+1)31

以及 ∑ i = 1 n T i = 3 ∑ i = 1 n i 2 + 3 ∑ i = 1 n i + ∑ i = 1 n 1 \sum_{i=1}^nTi=3\sum_{i=1}^ni^2+3\sum_{i=1}^ni+\sum_{i=1}^n1 i=1nTi=3i=1ni2+3i=1ni+i=1n1

对于 1 t + 2 t + . . . + n t 1^t+2^t+...+n^t 1t+2t+...+nt可用类似的方法求。把这个数列几位 X t n X_t^n Xtn,则有
( n + 1 ) t + 1 − 1 = ∑ i = 1 t C t + 1 t − i + 1 X i n (n+1)^{t+1}-1=\sum_{i=1}^tC_{t+1}^{t-i+1}X_i^n (n+1)t+11=i=1tCt+1ti+1Xin
X t n = ( n + 1 ) t + 1 − 1 − ∑ i = 0 t − 1 C t + 1 t − i + 1 X i n t + 1 X_t^n=\frac{(n+1)^{t+1}-1-\sum_{i=0}^{t-1}C_{t+1}^{t-i+1}X_i^n}{t+1} Xtn=t+1(n+1)t+11i=0t1Ct+1ti+1Xin

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值